The rank of ℤ4 cyclic codes of length 2e

Taher Abualrub, Ali Ghrayeb, Robert H. Oehmke

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this paper, we study cyclic codes of length n = 2e over the ring R4 = ℤ4[x]/(xn - 1). In particular, we study the rank of these codes and derive a closed-form expression for that. Finally, we give an example in which we study all codes of length 8 and classify them according to their type.

Original languageEnglish
Title of host publication2004 First International Symposium on Control, Communications and Signal Processing, ISCCSP 2004
Pages651-654
Number of pages4
Publication statusPublished - 12 Jul 2004
Event2004 First International Symposium on Control, Communications and Signal Processing, ISCCSP 2004 - Hammamet, Tunisia
Duration: 21 Mar 200424 Mar 2004

Publication series

NameInternational Symposium on Control, Communications and Signal Processing, ISCCSP

Other

Other2004 First International Symposium on Control, Communications and Signal Processing, ISCCSP 2004
CountryTunisia
CityHammamet
Period21/3/0424/3/04

Keywords

  • Cyclic codes
  • Dual codes
  • Self-dual codes

ASJC Scopus subject areas

  • Engineering(all)

Cite this

Abualrub, T., Ghrayeb, A., & Oehmke, R. H. (2004). The rank of ℤ4 cyclic codes of length 2e. In 2004 First International Symposium on Control, Communications and Signal Processing, ISCCSP 2004 (pp. 651-654). (International Symposium on Control, Communications and Signal Processing, ISCCSP).