THE JEREMIAH METZGER LECTURE NOVEL THERAPEUTIC STRATEGIES OF ALLERGIC AND IMMUNOLOGIC DISORDERS

Ronald Crystal, Odelya E. Pagovich

Research output: Contribution to journalReview article

Abstract

Advances in understanding the immunological basis and mechanisms underlying allergic and immunologic disorders have led to effective but costly long-term and repetitive biologic therapies. Gene therapy is a rapidly advancing technology, in which a single administration of an adeno-associated virus encoding the therapeutic protein or monoclonal antibody may provide effective long-term therapy for allergic and immunologic disorders. In this review, we summarize the recent studies from our laboratory developing gene therapy strategies to treat hereditary angioedema and peanut allergy. The unraveling of the pathogenesis of immune-based disorders, including hereditary deficiencies of components of the immune system and allergic disorders, has led to the development of therapies using parenteral administration of recombinant proteins or monoclonal antibodies (1). While many of these therapies are highly effective, they are limited by the half-life of the therapeutic protein or antibody, requiring repetitive administration of days to weeks (2-15). The focus of recent work in our laboratory has been to solve this problem by substituting protein/monoclonal antibody administration with gene therapy, where current technology allows for a single administration of the gene coding for a protein or antibody to provide persistent expression of effective levels of the therapeutic protein or antibody. Gene therapy is a drug delivery platform which uses genetic material, usually in the form of coding exons of the therapeutic gene, to correct, compensate for, or prevent the development of an abnormal phenotype (16). Originally conceptualized as a strategy to treat rare hereditary disorders, gene therapy is being developed for a wide range of human disorders, including common acquired conditions (17-20). In this review, we will describe how we have adopted gene therapy technology to develop therapies for immune-related disorders, using as examples hereditary angioedema, an inherited autosomal dominant disorder, and peanut allergy, a common acquired allergic disorder.

Original languageEnglish
Pages (from-to)250-265
Number of pages16
JournalTransactions of the American Clinical and Climatological Association
Volume129
Publication statusPublished - 1 Jan 2018

Fingerprint

Genetic Therapy
Peanut Hypersensitivity
Hereditary Angioedemas
Immune System Diseases
Monoclonal Antibodies
Therapeutics
Proteins
Technology
Antibodies
Genes
Dependovirus
Biological Therapy
Recombinant Proteins
Half-Life
Exons
Immune System
Phenotype
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Medicine(all)

Cite this

THE JEREMIAH METZGER LECTURE NOVEL THERAPEUTIC STRATEGIES OF ALLERGIC AND IMMUNOLOGIC DISORDERS. / Crystal, Ronald; Pagovich, Odelya E.

In: Transactions of the American Clinical and Climatological Association, Vol. 129, 01.01.2018, p. 250-265.

Research output: Contribution to journalReview article

@article{e594e4ffcae849e6906ab5d5a62de168,
title = "THE JEREMIAH METZGER LECTURE NOVEL THERAPEUTIC STRATEGIES OF ALLERGIC AND IMMUNOLOGIC DISORDERS",
abstract = "Advances in understanding the immunological basis and mechanisms underlying allergic and immunologic disorders have led to effective but costly long-term and repetitive biologic therapies. Gene therapy is a rapidly advancing technology, in which a single administration of an adeno-associated virus encoding the therapeutic protein or monoclonal antibody may provide effective long-term therapy for allergic and immunologic disorders. In this review, we summarize the recent studies from our laboratory developing gene therapy strategies to treat hereditary angioedema and peanut allergy. The unraveling of the pathogenesis of immune-based disorders, including hereditary deficiencies of components of the immune system and allergic disorders, has led to the development of therapies using parenteral administration of recombinant proteins or monoclonal antibodies (1). While many of these therapies are highly effective, they are limited by the half-life of the therapeutic protein or antibody, requiring repetitive administration of days to weeks (2-15). The focus of recent work in our laboratory has been to solve this problem by substituting protein/monoclonal antibody administration with gene therapy, where current technology allows for a single administration of the gene coding for a protein or antibody to provide persistent expression of effective levels of the therapeutic protein or antibody. Gene therapy is a drug delivery platform which uses genetic material, usually in the form of coding exons of the therapeutic gene, to correct, compensate for, or prevent the development of an abnormal phenotype (16). Originally conceptualized as a strategy to treat rare hereditary disorders, gene therapy is being developed for a wide range of human disorders, including common acquired conditions (17-20). In this review, we will describe how we have adopted gene therapy technology to develop therapies for immune-related disorders, using as examples hereditary angioedema, an inherited autosomal dominant disorder, and peanut allergy, a common acquired allergic disorder.",
author = "Ronald Crystal and Pagovich, {Odelya E.}",
year = "2018",
month = "1",
day = "1",
language = "English",
volume = "129",
pages = "250--265",
journal = "Transactions of the American Clinical and Climatological Association",
issn = "0065-7778",
publisher = "American Clinical And Climatological Association",

}

TY - JOUR

T1 - THE JEREMIAH METZGER LECTURE NOVEL THERAPEUTIC STRATEGIES OF ALLERGIC AND IMMUNOLOGIC DISORDERS

AU - Crystal, Ronald

AU - Pagovich, Odelya E.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Advances in understanding the immunological basis and mechanisms underlying allergic and immunologic disorders have led to effective but costly long-term and repetitive biologic therapies. Gene therapy is a rapidly advancing technology, in which a single administration of an adeno-associated virus encoding the therapeutic protein or monoclonal antibody may provide effective long-term therapy for allergic and immunologic disorders. In this review, we summarize the recent studies from our laboratory developing gene therapy strategies to treat hereditary angioedema and peanut allergy. The unraveling of the pathogenesis of immune-based disorders, including hereditary deficiencies of components of the immune system and allergic disorders, has led to the development of therapies using parenteral administration of recombinant proteins or monoclonal antibodies (1). While many of these therapies are highly effective, they are limited by the half-life of the therapeutic protein or antibody, requiring repetitive administration of days to weeks (2-15). The focus of recent work in our laboratory has been to solve this problem by substituting protein/monoclonal antibody administration with gene therapy, where current technology allows for a single administration of the gene coding for a protein or antibody to provide persistent expression of effective levels of the therapeutic protein or antibody. Gene therapy is a drug delivery platform which uses genetic material, usually in the form of coding exons of the therapeutic gene, to correct, compensate for, or prevent the development of an abnormal phenotype (16). Originally conceptualized as a strategy to treat rare hereditary disorders, gene therapy is being developed for a wide range of human disorders, including common acquired conditions (17-20). In this review, we will describe how we have adopted gene therapy technology to develop therapies for immune-related disorders, using as examples hereditary angioedema, an inherited autosomal dominant disorder, and peanut allergy, a common acquired allergic disorder.

AB - Advances in understanding the immunological basis and mechanisms underlying allergic and immunologic disorders have led to effective but costly long-term and repetitive biologic therapies. Gene therapy is a rapidly advancing technology, in which a single administration of an adeno-associated virus encoding the therapeutic protein or monoclonal antibody may provide effective long-term therapy for allergic and immunologic disorders. In this review, we summarize the recent studies from our laboratory developing gene therapy strategies to treat hereditary angioedema and peanut allergy. The unraveling of the pathogenesis of immune-based disorders, including hereditary deficiencies of components of the immune system and allergic disorders, has led to the development of therapies using parenteral administration of recombinant proteins or monoclonal antibodies (1). While many of these therapies are highly effective, they are limited by the half-life of the therapeutic protein or antibody, requiring repetitive administration of days to weeks (2-15). The focus of recent work in our laboratory has been to solve this problem by substituting protein/monoclonal antibody administration with gene therapy, where current technology allows for a single administration of the gene coding for a protein or antibody to provide persistent expression of effective levels of the therapeutic protein or antibody. Gene therapy is a drug delivery platform which uses genetic material, usually in the form of coding exons of the therapeutic gene, to correct, compensate for, or prevent the development of an abnormal phenotype (16). Originally conceptualized as a strategy to treat rare hereditary disorders, gene therapy is being developed for a wide range of human disorders, including common acquired conditions (17-20). In this review, we will describe how we have adopted gene therapy technology to develop therapies for immune-related disorders, using as examples hereditary angioedema, an inherited autosomal dominant disorder, and peanut allergy, a common acquired allergic disorder.

UR - http://www.scopus.com/inward/record.url?scp=85059797883&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059797883&partnerID=8YFLogxK

M3 - Review article

VL - 129

SP - 250

EP - 265

JO - Transactions of the American Clinical and Climatological Association

JF - Transactions of the American Clinical and Climatological Association

SN - 0065-7778

ER -