The genome sequence of the malaria mosquito Anopheles gambiae

R. A. Holt, G. Mani Subramanian, A. Halpern, G. G. Sutton, R. Charlab, D. R. Nusskern, P. Wincker, A. G. Clark, J. M C Ribeiro, R. Wides, S. L. Salzberg, B. Loftus, M. Yandell, W. H. Majoros, D. B. Rusch, Z. Lai, C. L. Kraft, J. F. Abril, V. Anthouard, P. Arensburger & 103 others P. W. Atkinson, H. Baden, V. de Berardinis, D. Baldwin, V. Benes, J. Biedler, C. Blass, R. Bolanos, D. Boscus, M. Barnstead, S. Cai, A. Center, K. Chatuverdi, G. K. Christophides, M. A. Chrystal, M. Clamp, A. Cravchik, V. Curwen, A. Dana, A. Delcher, I. Dew, C. A. Evans, M. Flanigan, A. Grundschober-Freimoser, L. Friedli, Z. Gu, P. Guan, R. Guigo, M. E. Hillenmeyer, S. L. Hladun, J. R. Hogan, Y. S. Hong, J. Hoover, O. Jaillon, Z. Ke, C. Kodira, E. Kokoza, A. Koutsos, I. Letunic, A. Levitsky, Y. Liang, J. J. Lin, N. F. Lobo, J. R. Lopez, Joel Malek, T. C. McIntosh, S. Meister, J. Miller, C. Mobarry, E. Mongin, S. D. Murphy, D. A. O'Brochta, C. Pfannkoch, R. Qi, M. A. Regier, K. Remington, H. Shao, M. V. Sharakhova, C. D. Sitter, J. Shetty, T. J. Smith, R. Strong, J. Sun, D. Thomasova, L. Q. Ton, P. Topalis, Z. Tu, M. F. Unger, B. Walenz, A. Wang, J. Wang, M. Wang, X. Wang, K. J. Woodford, J. R. Wortman, M. Wu, A. Yao, E. M. Zdobnov, H. Zhang, Q. Zhao, S. Zhao, S. C. Zhu, I. Zhimulev, M. Coluzzi, A. della Torre, C. W. Roth, C. Louis, F. Kalush, R. J. Mural, E. W. Myers, M. D. Adams, H. O. Smith, S. Broder, M. J. Gardner, C. M. Fraser, E. Birney, P. Bork, P. T. Brey, J. Craig Venter, J. Weissenbach, F. C. Kafatos, F. H. Collins, S. L. Hoffman

Research output: Contribution to journalArticle

1439 Citations (Scopus)

Abstract

Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.

Original languageEnglish
Pages (from-to)129-149
Number of pages21
JournalScience
Volume298
Issue number5591
DOIs
Publication statusPublished - 4 Oct 2002
Externally publishedYes

Fingerprint

Anopheles gambiae
Culicidae
Malaria
Genome
Base Pairing
Haplotypes
Sequence Analysis
Physiological Adaptation
Expressed Sequence Tags
Firearms
Cell Adhesion
Single Nucleotide Polymorphism
Insects
Immunity
Proteins
Genes

ASJC Scopus subject areas

  • Medicine(all)
  • General

Cite this

Holt, R. A., Mani Subramanian, G., Halpern, A., Sutton, G. G., Charlab, R., Nusskern, D. R., ... Hoffman, S. L. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298(5591), 129-149. https://doi.org/10.1126/science.1076181

The genome sequence of the malaria mosquito Anopheles gambiae. / Holt, R. A.; Mani Subramanian, G.; Halpern, A.; Sutton, G. G.; Charlab, R.; Nusskern, D. R.; Wincker, P.; Clark, A. G.; Ribeiro, J. M C; Wides, R.; Salzberg, S. L.; Loftus, B.; Yandell, M.; Majoros, W. H.; Rusch, D. B.; Lai, Z.; Kraft, C. L.; Abril, J. F.; Anthouard, V.; Arensburger, P.; Atkinson, P. W.; Baden, H.; de Berardinis, V.; Baldwin, D.; Benes, V.; Biedler, J.; Blass, C.; Bolanos, R.; Boscus, D.; Barnstead, M.; Cai, S.; Center, A.; Chatuverdi, K.; Christophides, G. K.; Chrystal, M. A.; Clamp, M.; Cravchik, A.; Curwen, V.; Dana, A.; Delcher, A.; Dew, I.; Evans, C. A.; Flanigan, M.; Grundschober-Freimoser, A.; Friedli, L.; Gu, Z.; Guan, P.; Guigo, R.; Hillenmeyer, M. E.; Hladun, S. L.; Hogan, J. R.; Hong, Y. S.; Hoover, J.; Jaillon, O.; Ke, Z.; Kodira, C.; Kokoza, E.; Koutsos, A.; Letunic, I.; Levitsky, A.; Liang, Y.; Lin, J. J.; Lobo, N. F.; Lopez, J. R.; Malek, Joel; McIntosh, T. C.; Meister, S.; Miller, J.; Mobarry, C.; Mongin, E.; Murphy, S. D.; O'Brochta, D. A.; Pfannkoch, C.; Qi, R.; Regier, M. A.; Remington, K.; Shao, H.; Sharakhova, M. V.; Sitter, C. D.; Shetty, J.; Smith, T. J.; Strong, R.; Sun, J.; Thomasova, D.; Ton, L. Q.; Topalis, P.; Tu, Z.; Unger, M. F.; Walenz, B.; Wang, A.; Wang, J.; Wang, M.; Wang, X.; Woodford, K. J.; Wortman, J. R.; Wu, M.; Yao, A.; Zdobnov, E. M.; Zhang, H.; Zhao, Q.; Zhao, S.; Zhu, S. C.; Zhimulev, I.; Coluzzi, M.; della Torre, A.; Roth, C. W.; Louis, C.; Kalush, F.; Mural, R. J.; Myers, E. W.; Adams, M. D.; Smith, H. O.; Broder, S.; Gardner, M. J.; Fraser, C. M.; Birney, E.; Bork, P.; Brey, P. T.; Craig Venter, J.; Weissenbach, J.; Kafatos, F. C.; Collins, F. H.; Hoffman, S. L.

In: Science, Vol. 298, No. 5591, 04.10.2002, p. 129-149.

Research output: Contribution to journalArticle

Holt, RA, Mani Subramanian, G, Halpern, A, Sutton, GG, Charlab, R, Nusskern, DR, Wincker, P, Clark, AG, Ribeiro, JMC, Wides, R, Salzberg, SL, Loftus, B, Yandell, M, Majoros, WH, Rusch, DB, Lai, Z, Kraft, CL, Abril, JF, Anthouard, V, Arensburger, P, Atkinson, PW, Baden, H, de Berardinis, V, Baldwin, D, Benes, V, Biedler, J, Blass, C, Bolanos, R, Boscus, D, Barnstead, M, Cai, S, Center, A, Chatuverdi, K, Christophides, GK, Chrystal, MA, Clamp, M, Cravchik, A, Curwen, V, Dana, A, Delcher, A, Dew, I, Evans, CA, Flanigan, M, Grundschober-Freimoser, A, Friedli, L, Gu, Z, Guan, P, Guigo, R, Hillenmeyer, ME, Hladun, SL, Hogan, JR, Hong, YS, Hoover, J, Jaillon, O, Ke, Z, Kodira, C, Kokoza, E, Koutsos, A, Letunic, I, Levitsky, A, Liang, Y, Lin, JJ, Lobo, NF, Lopez, JR, Malek, J, McIntosh, TC, Meister, S, Miller, J, Mobarry, C, Mongin, E, Murphy, SD, O'Brochta, DA, Pfannkoch, C, Qi, R, Regier, MA, Remington, K, Shao, H, Sharakhova, MV, Sitter, CD, Shetty, J, Smith, TJ, Strong, R, Sun, J, Thomasova, D, Ton, LQ, Topalis, P, Tu, Z, Unger, MF, Walenz, B, Wang, A, Wang, J, Wang, M, Wang, X, Woodford, KJ, Wortman, JR, Wu, M, Yao, A, Zdobnov, EM, Zhang, H, Zhao, Q, Zhao, S, Zhu, SC, Zhimulev, I, Coluzzi, M, della Torre, A, Roth, CW, Louis, C, Kalush, F, Mural, RJ, Myers, EW, Adams, MD, Smith, HO, Broder, S, Gardner, MJ, Fraser, CM, Birney, E, Bork, P, Brey, PT, Craig Venter, J, Weissenbach, J, Kafatos, FC, Collins, FH & Hoffman, SL 2002, 'The genome sequence of the malaria mosquito Anopheles gambiae', Science, vol. 298, no. 5591, pp. 129-149. https://doi.org/10.1126/science.1076181
Holt RA, Mani Subramanian G, Halpern A, Sutton GG, Charlab R, Nusskern DR et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129-149. https://doi.org/10.1126/science.1076181
Holt, R. A. ; Mani Subramanian, G. ; Halpern, A. ; Sutton, G. G. ; Charlab, R. ; Nusskern, D. R. ; Wincker, P. ; Clark, A. G. ; Ribeiro, J. M C ; Wides, R. ; Salzberg, S. L. ; Loftus, B. ; Yandell, M. ; Majoros, W. H. ; Rusch, D. B. ; Lai, Z. ; Kraft, C. L. ; Abril, J. F. ; Anthouard, V. ; Arensburger, P. ; Atkinson, P. W. ; Baden, H. ; de Berardinis, V. ; Baldwin, D. ; Benes, V. ; Biedler, J. ; Blass, C. ; Bolanos, R. ; Boscus, D. ; Barnstead, M. ; Cai, S. ; Center, A. ; Chatuverdi, K. ; Christophides, G. K. ; Chrystal, M. A. ; Clamp, M. ; Cravchik, A. ; Curwen, V. ; Dana, A. ; Delcher, A. ; Dew, I. ; Evans, C. A. ; Flanigan, M. ; Grundschober-Freimoser, A. ; Friedli, L. ; Gu, Z. ; Guan, P. ; Guigo, R. ; Hillenmeyer, M. E. ; Hladun, S. L. ; Hogan, J. R. ; Hong, Y. S. ; Hoover, J. ; Jaillon, O. ; Ke, Z. ; Kodira, C. ; Kokoza, E. ; Koutsos, A. ; Letunic, I. ; Levitsky, A. ; Liang, Y. ; Lin, J. J. ; Lobo, N. F. ; Lopez, J. R. ; Malek, Joel ; McIntosh, T. C. ; Meister, S. ; Miller, J. ; Mobarry, C. ; Mongin, E. ; Murphy, S. D. ; O'Brochta, D. A. ; Pfannkoch, C. ; Qi, R. ; Regier, M. A. ; Remington, K. ; Shao, H. ; Sharakhova, M. V. ; Sitter, C. D. ; Shetty, J. ; Smith, T. J. ; Strong, R. ; Sun, J. ; Thomasova, D. ; Ton, L. Q. ; Topalis, P. ; Tu, Z. ; Unger, M. F. ; Walenz, B. ; Wang, A. ; Wang, J. ; Wang, M. ; Wang, X. ; Woodford, K. J. ; Wortman, J. R. ; Wu, M. ; Yao, A. ; Zdobnov, E. M. ; Zhang, H. ; Zhao, Q. ; Zhao, S. ; Zhu, S. C. ; Zhimulev, I. ; Coluzzi, M. ; della Torre, A. ; Roth, C. W. ; Louis, C. ; Kalush, F. ; Mural, R. J. ; Myers, E. W. ; Adams, M. D. ; Smith, H. O. ; Broder, S. ; Gardner, M. J. ; Fraser, C. M. ; Birney, E. ; Bork, P. ; Brey, P. T. ; Craig Venter, J. ; Weissenbach, J. ; Kafatos, F. C. ; Collins, F. H. ; Hoffman, S. L. / The genome sequence of the malaria mosquito Anopheles gambiae. In: Science. 2002 ; Vol. 298, No. 5591. pp. 129-149.
@article{bf9a537da4714fc581e909090457ea39,
title = "The genome sequence of the malaria mosquito Anopheles gambiae",
abstract = "Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91{\%} of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ({"}dual haplotypes{"}) in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.",
author = "Holt, {R. A.} and {Mani Subramanian}, G. and A. Halpern and Sutton, {G. G.} and R. Charlab and Nusskern, {D. R.} and P. Wincker and Clark, {A. G.} and Ribeiro, {J. M C} and R. Wides and Salzberg, {S. L.} and B. Loftus and M. Yandell and Majoros, {W. H.} and Rusch, {D. B.} and Z. Lai and Kraft, {C. L.} and Abril, {J. F.} and V. Anthouard and P. Arensburger and Atkinson, {P. W.} and H. Baden and {de Berardinis}, V. and D. Baldwin and V. Benes and J. Biedler and C. Blass and R. Bolanos and D. Boscus and M. Barnstead and S. Cai and A. Center and K. Chatuverdi and Christophides, {G. K.} and Chrystal, {M. A.} and M. Clamp and A. Cravchik and V. Curwen and A. Dana and A. Delcher and I. Dew and Evans, {C. A.} and M. Flanigan and A. Grundschober-Freimoser and L. Friedli and Z. Gu and P. Guan and R. Guigo and Hillenmeyer, {M. E.} and Hladun, {S. L.} and Hogan, {J. R.} and Hong, {Y. S.} and J. Hoover and O. Jaillon and Z. Ke and C. Kodira and E. Kokoza and A. Koutsos and I. Letunic and A. Levitsky and Y. Liang and Lin, {J. J.} and Lobo, {N. F.} and Lopez, {J. R.} and Joel Malek and McIntosh, {T. C.} and S. Meister and J. Miller and C. Mobarry and E. Mongin and Murphy, {S. D.} and O'Brochta, {D. A.} and C. Pfannkoch and R. Qi and Regier, {M. A.} and K. Remington and H. Shao and Sharakhova, {M. V.} and Sitter, {C. D.} and J. Shetty and Smith, {T. J.} and R. Strong and J. Sun and D. Thomasova and Ton, {L. Q.} and P. Topalis and Z. Tu and Unger, {M. F.} and B. Walenz and A. Wang and J. Wang and M. Wang and X. Wang and Woodford, {K. J.} and Wortman, {J. R.} and M. Wu and A. Yao and Zdobnov, {E. M.} and H. Zhang and Q. Zhao and S. Zhao and Zhu, {S. C.} and I. Zhimulev and M. Coluzzi and {della Torre}, A. and Roth, {C. W.} and C. Louis and F. Kalush and Mural, {R. J.} and Myers, {E. W.} and Adams, {M. D.} and Smith, {H. O.} and S. Broder and Gardner, {M. J.} and Fraser, {C. M.} and E. Birney and P. Bork and Brey, {P. T.} and {Craig Venter}, J. and J. Weissenbach and Kafatos, {F. C.} and Collins, {F. H.} and Hoffman, {S. L.}",
year = "2002",
month = "10",
day = "4",
doi = "10.1126/science.1076181",
language = "English",
volume = "298",
pages = "129--149",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "5591",

}

TY - JOUR

T1 - The genome sequence of the malaria mosquito Anopheles gambiae

AU - Holt, R. A.

AU - Mani Subramanian, G.

AU - Halpern, A.

AU - Sutton, G. G.

AU - Charlab, R.

AU - Nusskern, D. R.

AU - Wincker, P.

AU - Clark, A. G.

AU - Ribeiro, J. M C

AU - Wides, R.

AU - Salzberg, S. L.

AU - Loftus, B.

AU - Yandell, M.

AU - Majoros, W. H.

AU - Rusch, D. B.

AU - Lai, Z.

AU - Kraft, C. L.

AU - Abril, J. F.

AU - Anthouard, V.

AU - Arensburger, P.

AU - Atkinson, P. W.

AU - Baden, H.

AU - de Berardinis, V.

AU - Baldwin, D.

AU - Benes, V.

AU - Biedler, J.

AU - Blass, C.

AU - Bolanos, R.

AU - Boscus, D.

AU - Barnstead, M.

AU - Cai, S.

AU - Center, A.

AU - Chatuverdi, K.

AU - Christophides, G. K.

AU - Chrystal, M. A.

AU - Clamp, M.

AU - Cravchik, A.

AU - Curwen, V.

AU - Dana, A.

AU - Delcher, A.

AU - Dew, I.

AU - Evans, C. A.

AU - Flanigan, M.

AU - Grundschober-Freimoser, A.

AU - Friedli, L.

AU - Gu, Z.

AU - Guan, P.

AU - Guigo, R.

AU - Hillenmeyer, M. E.

AU - Hladun, S. L.

AU - Hogan, J. R.

AU - Hong, Y. S.

AU - Hoover, J.

AU - Jaillon, O.

AU - Ke, Z.

AU - Kodira, C.

AU - Kokoza, E.

AU - Koutsos, A.

AU - Letunic, I.

AU - Levitsky, A.

AU - Liang, Y.

AU - Lin, J. J.

AU - Lobo, N. F.

AU - Lopez, J. R.

AU - Malek, Joel

AU - McIntosh, T. C.

AU - Meister, S.

AU - Miller, J.

AU - Mobarry, C.

AU - Mongin, E.

AU - Murphy, S. D.

AU - O'Brochta, D. A.

AU - Pfannkoch, C.

AU - Qi, R.

AU - Regier, M. A.

AU - Remington, K.

AU - Shao, H.

AU - Sharakhova, M. V.

AU - Sitter, C. D.

AU - Shetty, J.

AU - Smith, T. J.

AU - Strong, R.

AU - Sun, J.

AU - Thomasova, D.

AU - Ton, L. Q.

AU - Topalis, P.

AU - Tu, Z.

AU - Unger, M. F.

AU - Walenz, B.

AU - Wang, A.

AU - Wang, J.

AU - Wang, M.

AU - Wang, X.

AU - Woodford, K. J.

AU - Wortman, J. R.

AU - Wu, M.

AU - Yao, A.

AU - Zdobnov, E. M.

AU - Zhang, H.

AU - Zhao, Q.

AU - Zhao, S.

AU - Zhu, S. C.

AU - Zhimulev, I.

AU - Coluzzi, M.

AU - della Torre, A.

AU - Roth, C. W.

AU - Louis, C.

AU - Kalush, F.

AU - Mural, R. J.

AU - Myers, E. W.

AU - Adams, M. D.

AU - Smith, H. O.

AU - Broder, S.

AU - Gardner, M. J.

AU - Fraser, C. M.

AU - Birney, E.

AU - Bork, P.

AU - Brey, P. T.

AU - Craig Venter, J.

AU - Weissenbach, J.

AU - Kafatos, F. C.

AU - Collins, F. H.

AU - Hoffman, S. L.

PY - 2002/10/4

Y1 - 2002/10/4

N2 - Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.

AB - Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.

UR - http://www.scopus.com/inward/record.url?scp=0037020114&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037020114&partnerID=8YFLogxK

U2 - 10.1126/science.1076181

DO - 10.1126/science.1076181

M3 - Article

VL - 298

SP - 129

EP - 149

JO - Science

JF - Science

SN - 0036-8075

IS - 5591

ER -