The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes

Hao Tang, Edward Brothers, Michael B. Hall

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The noninnocent 2-diphenylphosphino-benzenethiolate (DPPBT) ligand containing both phosphorus and sulfur donors delocalizes the electron density in a manner reminiscent of dithiolenes. The electronic structure of the [ReL3]n (L = DPPBT, n = 0, 1+, 2+) complexes was probed with density-functional theory (DFT) and high-level ab initio methods including complete active space self-consistent field (CASSCF and CASPT2) and coupled cluster (CCSD and CCSD(T)). DFT predicts a slight preference for a closed-shell (CS) singlet ground state for the neutral [ReL3]0 and stronger preferences for low-spin ground states for the oxidized [ReL3]+ and [ReL3]2+. High-level ab initio methods confirm a CS singlet with a Re(III) (d4, S = 0) center as the ground state of [ReL3]0. Thus, this neutral Re species has considerably less thiyl radical character than the valence isoelectronic [RuL3]+, which is mainly a Ru(III) (d5, S = 1/2) anti-ferromagnetically (AF) coupled to a thiyl radical (S = 1/2). However, the oxidized derivatives [ReL3]+ and [ReL3]2+ show significant metal-stabilized thiyl radical character like [RuL3]+. Both [ReL3]+ and [ReL3]2+ have major contributions from Re(III) (d4, S = 1) centers AF coupled to thiyl and dithiyl DPPBT ligands. These findings are consistent with the experimental chemistry as [RuL3]+, [ReL3]+, and [ReL3]2+ can add ethylene to form the new C-S bonds, but [ReL3]0 cannot. The thiyl radicals on the S2 position (the S trans to a P donor) serve as the intrinsic electron acceptors in the actual ethylene addition reactions with Ru and Re tris(thiolate) complexes.

Original languageEnglish
Pages (from-to)583-593
Number of pages11
JournalInorganic Chemistry
Volume56
Issue number1
DOIs
Publication statusPublished - 3 Jan 2017

Fingerprint

Rhenium
Ruthenium
rhenium
Ground state
ruthenium
Electronic structure
Electrons
electronic structure
Ligands
valence
Density functional theory
Sulfur
Phosphorus
ground state
Addition reactions
ethylene
Metals
density functional theory
ligands
Carrier concentration

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this

@article{d75d070551ab4b62b469b512d407adee,
title = "The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes",
abstract = "The noninnocent 2-diphenylphosphino-benzenethiolate (DPPBT) ligand containing both phosphorus and sulfur donors delocalizes the electron density in a manner reminiscent of dithiolenes. The electronic structure of the [ReL3]n (L = DPPBT, n = 0, 1+, 2+) complexes was probed with density-functional theory (DFT) and high-level ab initio methods including complete active space self-consistent field (CASSCF and CASPT2) and coupled cluster (CCSD and CCSD(T)). DFT predicts a slight preference for a closed-shell (CS) singlet ground state for the neutral [ReL3]0 and stronger preferences for low-spin ground states for the oxidized [ReL3]+ and [ReL3]2+. High-level ab initio methods confirm a CS singlet with a Re(III) (d4, S = 0) center as the ground state of [ReL3]0. Thus, this neutral Re species has considerably less thiyl radical character than the valence isoelectronic [RuL3]+, which is mainly a Ru(III) (d5, S = 1/2) anti-ferromagnetically (AF) coupled to a thiyl radical (S = 1/2). However, the oxidized derivatives [ReL3]+ and [ReL3]2+ show significant metal-stabilized thiyl radical character like [RuL3]+. Both [ReL3]+ and [ReL3]2+ have major contributions from Re(III) (d4, S = 1) centers AF coupled to thiyl and dithiyl DPPBT ligands. These findings are consistent with the experimental chemistry as [RuL3]+, [ReL3]+, and [ReL3]2+ can add ethylene to form the new C-S bonds, but [ReL3]0 cannot. The thiyl radicals on the S2 position (the S trans to a P donor) serve as the intrinsic electron acceptors in the actual ethylene addition reactions with Ru and Re tris(thiolate) complexes.",
author = "Hao Tang and Edward Brothers and Hall, {Michael B.}",
year = "2017",
month = "1",
day = "3",
doi = "10.1021/acs.inorgchem.6b02434",
language = "English",
volume = "56",
pages = "583--593",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "1",

}

TY - JOUR

T1 - The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes

AU - Tang, Hao

AU - Brothers, Edward

AU - Hall, Michael B.

PY - 2017/1/3

Y1 - 2017/1/3

N2 - The noninnocent 2-diphenylphosphino-benzenethiolate (DPPBT) ligand containing both phosphorus and sulfur donors delocalizes the electron density in a manner reminiscent of dithiolenes. The electronic structure of the [ReL3]n (L = DPPBT, n = 0, 1+, 2+) complexes was probed with density-functional theory (DFT) and high-level ab initio methods including complete active space self-consistent field (CASSCF and CASPT2) and coupled cluster (CCSD and CCSD(T)). DFT predicts a slight preference for a closed-shell (CS) singlet ground state for the neutral [ReL3]0 and stronger preferences for low-spin ground states for the oxidized [ReL3]+ and [ReL3]2+. High-level ab initio methods confirm a CS singlet with a Re(III) (d4, S = 0) center as the ground state of [ReL3]0. Thus, this neutral Re species has considerably less thiyl radical character than the valence isoelectronic [RuL3]+, which is mainly a Ru(III) (d5, S = 1/2) anti-ferromagnetically (AF) coupled to a thiyl radical (S = 1/2). However, the oxidized derivatives [ReL3]+ and [ReL3]2+ show significant metal-stabilized thiyl radical character like [RuL3]+. Both [ReL3]+ and [ReL3]2+ have major contributions from Re(III) (d4, S = 1) centers AF coupled to thiyl and dithiyl DPPBT ligands. These findings are consistent with the experimental chemistry as [RuL3]+, [ReL3]+, and [ReL3]2+ can add ethylene to form the new C-S bonds, but [ReL3]0 cannot. The thiyl radicals on the S2 position (the S trans to a P donor) serve as the intrinsic electron acceptors in the actual ethylene addition reactions with Ru and Re tris(thiolate) complexes.

AB - The noninnocent 2-diphenylphosphino-benzenethiolate (DPPBT) ligand containing both phosphorus and sulfur donors delocalizes the electron density in a manner reminiscent of dithiolenes. The electronic structure of the [ReL3]n (L = DPPBT, n = 0, 1+, 2+) complexes was probed with density-functional theory (DFT) and high-level ab initio methods including complete active space self-consistent field (CASSCF and CASPT2) and coupled cluster (CCSD and CCSD(T)). DFT predicts a slight preference for a closed-shell (CS) singlet ground state for the neutral [ReL3]0 and stronger preferences for low-spin ground states for the oxidized [ReL3]+ and [ReL3]2+. High-level ab initio methods confirm a CS singlet with a Re(III) (d4, S = 0) center as the ground state of [ReL3]0. Thus, this neutral Re species has considerably less thiyl radical character than the valence isoelectronic [RuL3]+, which is mainly a Ru(III) (d5, S = 1/2) anti-ferromagnetically (AF) coupled to a thiyl radical (S = 1/2). However, the oxidized derivatives [ReL3]+ and [ReL3]2+ show significant metal-stabilized thiyl radical character like [RuL3]+. Both [ReL3]+ and [ReL3]2+ have major contributions from Re(III) (d4, S = 1) centers AF coupled to thiyl and dithiyl DPPBT ligands. These findings are consistent with the experimental chemistry as [RuL3]+, [ReL3]+, and [ReL3]2+ can add ethylene to form the new C-S bonds, but [ReL3]0 cannot. The thiyl radicals on the S2 position (the S trans to a P donor) serve as the intrinsic electron acceptors in the actual ethylene addition reactions with Ru and Re tris(thiolate) complexes.

UR - http://www.scopus.com/inward/record.url?scp=85008912356&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85008912356&partnerID=8YFLogxK

U2 - 10.1021/acs.inorgchem.6b02434

DO - 10.1021/acs.inorgchem.6b02434

M3 - Article

VL - 56

SP - 583

EP - 593

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 1

ER -