The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors

Brahim Aissa, M. A. El Khakani

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

We report on the electrical performance of field effect transistor (FET) nanodevices based on suspended single-wall carbon nanotubes (SWCNTs) grown by our 'all-laser' synthesis process. The attractiveness of the proposed approach lies in the combination of standard microfabrication processing with the in situ 'all-laser' localized growth of SWCNTs, offering an affordable way of directly integrating SWCNTs into nanodevices. The 'all-laser' process uses the same KrF excimer laser (248nm), first, to deposit the nanocatalyzed electrodes and, in a second step, to grow the SWCNTs in a suspended geometry, achieving thereby the lateral bridging of the electrodes. The nanocatalyzed electrodes consist of a multilayer stack sandwiching a catalyst nanolayer (∼5nm thick) composed of Co/Ni nanoparticles. The 'all-laser' grown SWCNTs (∼1nm diameter) are most often seen to self-assemble into bundles (10-20nm diameter) and to bridge laterally the various gap lengths (in the 2-10νm investigation range) separating adjacent electrodes. The suspended-SWCNT-based FETs were found to behave as p-type transistors, in air and at room temperature, with very high ON/OFF switching ratios (whose magnitude markedly increases as the active channel length is reduced). For the shortest gap (i.e.2νm), the suspended-SWCNT-based FETs exhibited not only an ON/OFF switching ratio in excess of seven orders of magnitude, but also an ON-state conductance as high as 3.26νS. Their corresponding effective carrier mobility was estimated (at VSD = 100mV) to a value of ∼4000cm2V -1s-1, which is almost ten times higher than the hole mobility in single-crystal silicon at room temperature.

Original languageEnglish
Article number175203
JournalNanotechnology
Volume20
Issue number17
DOIs
Publication statusPublished - 2009
Externally publishedYes

Fingerprint

Carbon Nanotubes
Field effect transistors
Carbon nanotubes
Electrodes
Lasers
Microtechnology
Excimer Lasers
Temperature
Hole mobility
Microfabrication
Carrier mobility
Excimer lasers
Silicon
Nanoparticles
Multilayers
Transistors
Deposits
Air
Single crystals
Catalysts

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Mechanics of Materials
  • Materials Science(all)

Cite this

The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors. / Aissa, Brahim; El Khakani, M. A.

In: Nanotechnology, Vol. 20, No. 17, 175203, 2009.

Research output: Contribution to journalArticle

@article{a7895a5dda9e4414a84d67995590652d,
title = "The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors",
abstract = "We report on the electrical performance of field effect transistor (FET) nanodevices based on suspended single-wall carbon nanotubes (SWCNTs) grown by our 'all-laser' synthesis process. The attractiveness of the proposed approach lies in the combination of standard microfabrication processing with the in situ 'all-laser' localized growth of SWCNTs, offering an affordable way of directly integrating SWCNTs into nanodevices. The 'all-laser' process uses the same KrF excimer laser (248nm), first, to deposit the nanocatalyzed electrodes and, in a second step, to grow the SWCNTs in a suspended geometry, achieving thereby the lateral bridging of the electrodes. The nanocatalyzed electrodes consist of a multilayer stack sandwiching a catalyst nanolayer (∼5nm thick) composed of Co/Ni nanoparticles. The 'all-laser' grown SWCNTs (∼1nm diameter) are most often seen to self-assemble into bundles (10-20nm diameter) and to bridge laterally the various gap lengths (in the 2-10νm investigation range) separating adjacent electrodes. The suspended-SWCNT-based FETs were found to behave as p-type transistors, in air and at room temperature, with very high ON/OFF switching ratios (whose magnitude markedly increases as the active channel length is reduced). For the shortest gap (i.e.2νm), the suspended-SWCNT-based FETs exhibited not only an ON/OFF switching ratio in excess of seven orders of magnitude, but also an ON-state conductance as high as 3.26νS. Their corresponding effective carrier mobility was estimated (at VSD = 100mV) to a value of ∼4000cm2V -1s-1, which is almost ten times higher than the hole mobility in single-crystal silicon at room temperature.",
author = "Brahim Aissa and {El Khakani}, {M. A.}",
year = "2009",
doi = "10.1088/0957-4484/20/17/175203",
language = "English",
volume = "20",
journal = "Nanotechnology",
issn = "0957-4484",
publisher = "IOP Publishing Ltd.",
number = "17",

}

TY - JOUR

T1 - The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotube-based field effect transistors

AU - Aissa, Brahim

AU - El Khakani, M. A.

PY - 2009

Y1 - 2009

N2 - We report on the electrical performance of field effect transistor (FET) nanodevices based on suspended single-wall carbon nanotubes (SWCNTs) grown by our 'all-laser' synthesis process. The attractiveness of the proposed approach lies in the combination of standard microfabrication processing with the in situ 'all-laser' localized growth of SWCNTs, offering an affordable way of directly integrating SWCNTs into nanodevices. The 'all-laser' process uses the same KrF excimer laser (248nm), first, to deposit the nanocatalyzed electrodes and, in a second step, to grow the SWCNTs in a suspended geometry, achieving thereby the lateral bridging of the electrodes. The nanocatalyzed electrodes consist of a multilayer stack sandwiching a catalyst nanolayer (∼5nm thick) composed of Co/Ni nanoparticles. The 'all-laser' grown SWCNTs (∼1nm diameter) are most often seen to self-assemble into bundles (10-20nm diameter) and to bridge laterally the various gap lengths (in the 2-10νm investigation range) separating adjacent electrodes. The suspended-SWCNT-based FETs were found to behave as p-type transistors, in air and at room temperature, with very high ON/OFF switching ratios (whose magnitude markedly increases as the active channel length is reduced). For the shortest gap (i.e.2νm), the suspended-SWCNT-based FETs exhibited not only an ON/OFF switching ratio in excess of seven orders of magnitude, but also an ON-state conductance as high as 3.26νS. Their corresponding effective carrier mobility was estimated (at VSD = 100mV) to a value of ∼4000cm2V -1s-1, which is almost ten times higher than the hole mobility in single-crystal silicon at room temperature.

AB - We report on the electrical performance of field effect transistor (FET) nanodevices based on suspended single-wall carbon nanotubes (SWCNTs) grown by our 'all-laser' synthesis process. The attractiveness of the proposed approach lies in the combination of standard microfabrication processing with the in situ 'all-laser' localized growth of SWCNTs, offering an affordable way of directly integrating SWCNTs into nanodevices. The 'all-laser' process uses the same KrF excimer laser (248nm), first, to deposit the nanocatalyzed electrodes and, in a second step, to grow the SWCNTs in a suspended geometry, achieving thereby the lateral bridging of the electrodes. The nanocatalyzed electrodes consist of a multilayer stack sandwiching a catalyst nanolayer (∼5nm thick) composed of Co/Ni nanoparticles. The 'all-laser' grown SWCNTs (∼1nm diameter) are most often seen to self-assemble into bundles (10-20nm diameter) and to bridge laterally the various gap lengths (in the 2-10νm investigation range) separating adjacent electrodes. The suspended-SWCNT-based FETs were found to behave as p-type transistors, in air and at room temperature, with very high ON/OFF switching ratios (whose magnitude markedly increases as the active channel length is reduced). For the shortest gap (i.e.2νm), the suspended-SWCNT-based FETs exhibited not only an ON/OFF switching ratio in excess of seven orders of magnitude, but also an ON-state conductance as high as 3.26νS. Their corresponding effective carrier mobility was estimated (at VSD = 100mV) to a value of ∼4000cm2V -1s-1, which is almost ten times higher than the hole mobility in single-crystal silicon at room temperature.

UR - http://www.scopus.com/inward/record.url?scp=65149089062&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65149089062&partnerID=8YFLogxK

U2 - 10.1088/0957-4484/20/17/175203

DO - 10.1088/0957-4484/20/17/175203

M3 - Article

VL - 20

JO - Nanotechnology

JF - Nanotechnology

SN - 0957-4484

IS - 17

M1 - 175203

ER -