Synthesis of thioether-functional poly(olefin)s via ruthenium-alkylidene initiated ring-opening metathesis polymerization

Upendar Reddy Gandra, Santhosh Kumar Podiyanachari, Antsar R. Hlil, Ihor Kulai, Saeed Al-Meer, Mohammed Al-Hashimi, Hassan S. Bazzi

Research output: Contribution to journalArticle

Abstract

Ring-opening metathesis polymerization (ROMP) of thioether-derived oxanorbornene imide (M1) and its copolymerization with various cycloolefin comonomers such as cyclopentene (M2), cyclopent-3-en-1-ol (M3), cycloheptene (M4), and cyclooctene (M5) using Hoveyda–Grubbs second generation catalyst has been investigated. Polymerizations were performed at two different temperatures (0 and 25 °C) and the obtained functional poly(olefin)s were characterized by nuclear magnetic resonance 1H and 13C (NMR), and infrared spectroscopy as well as size exclusion chromatography, differential scanning calorimetry, and thermogravimetric analysis analyses. Additionally, the dependence of the polymer composition on the reaction temperature and monomer feed was studied with time-dependent 1H NMR experiments. Copolymerization of M1 with a five-membered cycloolefin monomer M2 showed relatively low ROMP reactivity irrespective of the reaction conditions in comparison to M3, M4, and M5 monomers. In general, the degree of monomer incorporation into poly(olefin)s were determined in the order of M5 > M3 > M4 > M2, and that sheds light on the effect of cycloolefin ring strain energies in the ruthenium-alkylidene initiated ROMP.

Original languageEnglish
Pages (from-to)1741-1747
Number of pages7
JournalJournal of Polymer Science, Part A: Polymer Chemistry
Volume57
Issue number16
DOIs
Publication statusPublished - 1 Jan 2019

    Fingerprint

Keywords

  • copolymerization
  • cycloolefins; functional-poly(olefin)s
  • metathesis
  • poly(olefin)s; ROMP
  • ring-opening metathesispolymerization (ROMP); ruthenium-alkylidene

ASJC Scopus subject areas

  • Polymers and Plastics
  • Organic Chemistry
  • Materials Chemistry

Cite this