Structural phase transitions of the metal oxide perovskites SrTiO 3, LaAlO3, and LaTiO3 studied with a screened hybrid functional

Fadwa El-Mellouhi, Edward Brothers, Melissa J. Lucero, Ireneusz W. Bulik, Gustavo E. Scuseria

Research output: Contribution to journalArticle

34 Citations (Scopus)


We have investigated the structural phase transitions of the transition metal oxide perovskites SrTiO3, LaAlO3, and LaTiO 3 using the screened hybrid density functional of Heyd, Scuseria, and Ernzerhof (HSE06). We show that HSE06-computed lattice parameters, octahedral tilts, and rotations, as well as electronic properties, are significantly improved over semilocal functionals. We predict the crystal-field splitting (ΔCF) resulting from the structural phase transition in SrTiO3 and LaAlO3 to be 3 meV and 10 meV, respectively, in excellent agreement with experimental results. HSE06 identifies correctly LaTiO3 in the magnetic states as a Mott insulator. Also, it predicts that the GdFeO3-type distortion in nonmagnetic LaTiO3 will induce a large ΔCF of 410 meV. This large crystal-field splitting associated with the large magnetic moment found in the G-type antiferromagnetic state suggests that LaTiO3 has an induced orbital order, which is confirmed by the visualization of the highest occupied orbitals. These results strongly indicate that HSE06 is capable of efficiently and accurately modeling perovskite oxides and promises to efficiently capture the physics at their heterointerfaces.

Original languageEnglish
Article number035107
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number3
Publication statusPublished - 4 Jan 2013


ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this