Abstract
Hydrogenated amorphous silicon (a-Si:H) refers to a broad class of atomic configurations, sharing a lack of long-range order, but varying significantly in material properties, including optical constants, porosity, hydrogen content, and intrinsic stress. It has long been known that deposition conditions affect microstructure, but much work remains to uncover the correlation between these parameters and their influence on electrical, mechanical, and optical properties critical for high-performance a-Si:H photovoltaic devices. We synthesize and augment several previous models of deposition phenomena and ion bombardment, developing a refined model correlating plasma-enhanced chemical vapor deposition conditions (pressure and discharge power and frequency) to the development of intrinsic stress in thin films. As predicted by the model presented herein, we observe that film compressive stress varies nearly linearly with bombarding ion momentum and with a (-1/4) power dependence on deposition pressure, that tensile stress is proportional to a reduction in film porosity, and the net film intrinsic stress results from a balance between these two forces. We observe the hydrogen-bonding configuration to evolve with increasing ion momentum, shifting from a void-dominated configuration to a silicon-monohydride configuration. Through this enhanced understanding of the structure-property-process relation of a-Si:H films, improved tunability of optical, mechanical, structural, and electronic properties should be achievable.
Original language | English |
---|---|
Article number | 075202 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 85 |
Issue number | 7 |
DOIs | |
Publication status | Published - 6 Feb 2012 |
Externally published | Yes |
Fingerprint
ASJC Scopus subject areas
- Condensed Matter Physics
- Electronic, Optical and Magnetic Materials
Cite this
Structural origins of intrinsic stress in amorphous silicon thin films. / Johlin, Eric; Tabet, Nouar; Castro-Galnares, Sebastián; Abdallah, Amir; Bertoni, Mariana I.; Asafa, Tesleem; Grossman, Jeffrey C.; Said, Syed; Buonassisi, Tonio.
In: Physical Review B - Condensed Matter and Materials Physics, Vol. 85, No. 7, 075202, 06.02.2012.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Structural origins of intrinsic stress in amorphous silicon thin films
AU - Johlin, Eric
AU - Tabet, Nouar
AU - Castro-Galnares, Sebastián
AU - Abdallah, Amir
AU - Bertoni, Mariana I.
AU - Asafa, Tesleem
AU - Grossman, Jeffrey C.
AU - Said, Syed
AU - Buonassisi, Tonio
PY - 2012/2/6
Y1 - 2012/2/6
N2 - Hydrogenated amorphous silicon (a-Si:H) refers to a broad class of atomic configurations, sharing a lack of long-range order, but varying significantly in material properties, including optical constants, porosity, hydrogen content, and intrinsic stress. It has long been known that deposition conditions affect microstructure, but much work remains to uncover the correlation between these parameters and their influence on electrical, mechanical, and optical properties critical for high-performance a-Si:H photovoltaic devices. We synthesize and augment several previous models of deposition phenomena and ion bombardment, developing a refined model correlating plasma-enhanced chemical vapor deposition conditions (pressure and discharge power and frequency) to the development of intrinsic stress in thin films. As predicted by the model presented herein, we observe that film compressive stress varies nearly linearly with bombarding ion momentum and with a (-1/4) power dependence on deposition pressure, that tensile stress is proportional to a reduction in film porosity, and the net film intrinsic stress results from a balance between these two forces. We observe the hydrogen-bonding configuration to evolve with increasing ion momentum, shifting from a void-dominated configuration to a silicon-monohydride configuration. Through this enhanced understanding of the structure-property-process relation of a-Si:H films, improved tunability of optical, mechanical, structural, and electronic properties should be achievable.
AB - Hydrogenated amorphous silicon (a-Si:H) refers to a broad class of atomic configurations, sharing a lack of long-range order, but varying significantly in material properties, including optical constants, porosity, hydrogen content, and intrinsic stress. It has long been known that deposition conditions affect microstructure, but much work remains to uncover the correlation between these parameters and their influence on electrical, mechanical, and optical properties critical for high-performance a-Si:H photovoltaic devices. We synthesize and augment several previous models of deposition phenomena and ion bombardment, developing a refined model correlating plasma-enhanced chemical vapor deposition conditions (pressure and discharge power and frequency) to the development of intrinsic stress in thin films. As predicted by the model presented herein, we observe that film compressive stress varies nearly linearly with bombarding ion momentum and with a (-1/4) power dependence on deposition pressure, that tensile stress is proportional to a reduction in film porosity, and the net film intrinsic stress results from a balance between these two forces. We observe the hydrogen-bonding configuration to evolve with increasing ion momentum, shifting from a void-dominated configuration to a silicon-monohydride configuration. Through this enhanced understanding of the structure-property-process relation of a-Si:H films, improved tunability of optical, mechanical, structural, and electronic properties should be achievable.
UR - http://www.scopus.com/inward/record.url?scp=84857735301&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857735301&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.85.075202
DO - 10.1103/PhysRevB.85.075202
M3 - Article
AN - SCOPUS:84857735301
VL - 85
JO - Physical Review B-Condensed Matter
JF - Physical Review B-Condensed Matter
SN - 0163-1829
IS - 7
M1 - 075202
ER -