Stella: Geotagging images via crowdsourcing

Christopher Jonathan, Mohamed F. Mokbel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Geotagged data (e.g. images or news items) have empowered various important applications, e.g., search engines and news agencies. However, the lack of available geotagged data significantly reduces the impact of such applications. Meanwhile, existing geotagging approaches rely on the existence of prior knowledge, e.g., accurate training dataset for machine learning techniques. This paper presents Stella; a crowdsourcing framework for image geotagging. The high accuracy of Stella is resulted by being able to recruit workers near the image location even without knowing its location. In addition, Stella also return its confidence about the reported location to help users in understanding the result quality. Experimental evaluation shows that Stella consistently geotags an image with an average of 95% accuracy and 90% of confidence.

Original languageEnglish
Title of host publication26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018
EditorsLi Xiong, Roberto Tamassia, Kashani Farnoush Banaei, Ralf Hartmut Guting, Erik Hoel
PublisherAssociation for Computing Machinery
Pages168-178
Number of pages11
ISBN (Electronic)9781450358897
DOIs
Publication statusPublished - 6 Nov 2018
Event26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018 - Seattle, United States
Duration: 6 Nov 20189 Nov 2018

Publication series

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Other

Other26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018
CountryUnited States
CitySeattle
Period6/11/189/11/18

Keywords

  • Crowdsourcing
  • Geotagging Framework
  • Spatial crowdsourcing

ASJC Scopus subject areas

  • Earth-Surface Processes
  • Computer Science Applications
  • Modelling and Simulation
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Fingerprint Dive into the research topics of 'Stella: Geotagging images via crowdsourcing'. Together they form a unique fingerprint.

  • Cite this

    Jonathan, C., & Mokbel, M. F. (2018). Stella: Geotagging images via crowdsourcing. In L. Xiong, R. Tamassia, K. F. Banaei, R. H. Guting, & E. Hoel (Eds.), 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018 (pp. 168-178). (GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems). Association for Computing Machinery. https://doi.org/10.1145/3274895.3274902