### Abstract

We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character χ of conductor q such that the L-values L(1/2 , f χ) and L(1/2 , χ) do not vanish.

Original language | English |
---|---|

Pages (from-to) | 237-250 |

Number of pages | 14 |

Journal | Journal of the Ramanujan Mathematical Society |

Volume | 30 |

Issue number | 3 |

Publication status | Published - 1 Sep 2015 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

**Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke-Maass L-functions.** / Das, Soumya; Khan, Rizwanur.

Research output: Contribution to journal › Article

*Journal of the Ramanujan Mathematical Society*, vol. 30, no. 3, pp. 237-250.

}

TY - JOUR

T1 - Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke-Maass L-functions

AU - Das, Soumya

AU - Khan, Rizwanur

PY - 2015/9/1

Y1 - 2015/9/1

N2 - We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character χ of conductor q such that the L-values L(1/2 , f χ) and L(1/2 , χ) do not vanish.

AB - We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character χ of conductor q such that the L-values L(1/2 , f χ) and L(1/2 , χ) do not vanish.

UR - http://www.scopus.com/inward/record.url?scp=84939157267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939157267&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84939157267

VL - 30

SP - 237

EP - 250

JO - Journal of the Ramanujan Mathematical Society

JF - Journal of the Ramanujan Mathematical Society

SN - 0970-1249

IS - 3

ER -