Simulation of the size-composition distribution of atmospheric nanoparticles over Europe

David Patoulias, Christos Fountoukis, Ilona Riipinen, Ari Asmi, Markku Kulmala, Spyros N. Pandis

Research output: Contribution to journalArticle

1 Citation (Scopus)


PMCAMx-UF, a three-dimensional chemical transport model focusing on the simulation of the ultrafine particle size distribution and composition has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol (OA). The model was applied in Europe to quantify the effect of secondary semi-volatile organic vapors on particle number concentrations. The model predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The measurements included both ground and airborne measurements, from stations across Europe and a zeppelin measuring above Po Valley. The ground level concentrations of particles with a diameter larger than 100 nm (N/100) were reproduced with a daily normalized mean error of 40 % and a daily normalized mean bias of-20 %. PMCAMx-UF tended to overestimate the concentration of particles with a diameter larger than 10 nm (N/10) with a daily normalized mean bias of 75 %. The model was able to reproduce, within a factor of 2, 85 % of the N/10 and 75 % of the N/100 zeppelin measurements above ground. The condensation of organics led to an increase (50 %-120 %) in the N/100 concentration mainly in central and northern Europe, while the N/10 concentration decreased by 10 %-30 %. Including the VBS in PMCAMx-UF improved its ability to simulate aerosol number concentration compared to simulations neglecting organic condensation on ultrafine particles.

Original languageEnglish
Pages (from-to)13639-13654
Number of pages16
JournalAtmospheric Chemistry and Physics
Issue number18
Publication statusPublished - 27 Sep 2018


ASJC Scopus subject areas

  • Atmospheric Science

Cite this