Shock-based experimental investigation of the linear particle chain impact damper

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Impact dampers (IDs) provide an effective, economical, and retrofittable solution to the vibration problem in several engineering applications. An ID typically consists of a single or multiple masses constrained between two or more stops and attached to a primary system to be controlled. The latest developed type in the IDs family is the linear particle chain (LPC) ID. It consists of a linear arrangement of two sizes of freely moving masses, constrained by two stops. The high number of impacts among the damper masses leads to rapid energy dissipation compared to the common IDs. This paper presents an experimental study on the effectiveness of the LPC ID in reducing the vibrations of a single degree-of-freedom (SDOF) frame structure under different shock excitations. Prototypes of the LPC and conventional IDs with different geometric parameters are fabricated. The structure is excited by either an impact at the top floor or pulses at its base. The damping effect of the LPC ID is compared with that of conventional IDs. The experimental outcomes clearly show that the LPC ID can effectively reduce the response of simple structures under shock excitation. Additional investigations are conducted to examine the LPC ID sensitivity to the main damper parameters, such as the chain length, damper mass ratio, and damper clearance.

Original languageEnglish
Article number061012
JournalJournal of Vibration and Acoustics, Transactions of the ASME
Volume137
Issue number6
DOIs
Publication statusPublished - 1 Dec 2015

Fingerprint

dampers
Chain length
Energy dissipation
Damping
shock
vibration
clearances
mass ratios
excitation

ASJC Scopus subject areas

  • Mechanics of Materials
  • Acoustics and Ultrasonics
  • Mechanical Engineering

Cite this

@article{6d64f4ebf928496ab0c1a374c6f3b5a2,
title = "Shock-based experimental investigation of the linear particle chain impact damper",
abstract = "Impact dampers (IDs) provide an effective, economical, and retrofittable solution to the vibration problem in several engineering applications. An ID typically consists of a single or multiple masses constrained between two or more stops and attached to a primary system to be controlled. The latest developed type in the IDs family is the linear particle chain (LPC) ID. It consists of a linear arrangement of two sizes of freely moving masses, constrained by two stops. The high number of impacts among the damper masses leads to rapid energy dissipation compared to the common IDs. This paper presents an experimental study on the effectiveness of the LPC ID in reducing the vibrations of a single degree-of-freedom (SDOF) frame structure under different shock excitations. Prototypes of the LPC and conventional IDs with different geometric parameters are fabricated. The structure is excited by either an impact at the top floor or pulses at its base. The damping effect of the LPC ID is compared with that of conventional IDs. The experimental outcomes clearly show that the LPC ID can effectively reduce the response of simple structures under shock excitation. Additional investigations are conducted to examine the LPC ID sensitivity to the main damper parameters, such as the chain length, damper mass ratio, and damper clearance.",
author = "Mohamed Gharib and Mansour Karkoub",
year = "2015",
month = "12",
day = "1",
doi = "10.1115/1.4031406",
language = "English",
volume = "137",
journal = "Journal of Vibration and Acoustics, Transactions of the ASME",
issn = "1048-9002",
publisher = "American Society of Mechanical Engineers(ASME)",
number = "6",

}

TY - JOUR

T1 - Shock-based experimental investigation of the linear particle chain impact damper

AU - Gharib, Mohamed

AU - Karkoub, Mansour

PY - 2015/12/1

Y1 - 2015/12/1

N2 - Impact dampers (IDs) provide an effective, economical, and retrofittable solution to the vibration problem in several engineering applications. An ID typically consists of a single or multiple masses constrained between two or more stops and attached to a primary system to be controlled. The latest developed type in the IDs family is the linear particle chain (LPC) ID. It consists of a linear arrangement of two sizes of freely moving masses, constrained by two stops. The high number of impacts among the damper masses leads to rapid energy dissipation compared to the common IDs. This paper presents an experimental study on the effectiveness of the LPC ID in reducing the vibrations of a single degree-of-freedom (SDOF) frame structure under different shock excitations. Prototypes of the LPC and conventional IDs with different geometric parameters are fabricated. The structure is excited by either an impact at the top floor or pulses at its base. The damping effect of the LPC ID is compared with that of conventional IDs. The experimental outcomes clearly show that the LPC ID can effectively reduce the response of simple structures under shock excitation. Additional investigations are conducted to examine the LPC ID sensitivity to the main damper parameters, such as the chain length, damper mass ratio, and damper clearance.

AB - Impact dampers (IDs) provide an effective, economical, and retrofittable solution to the vibration problem in several engineering applications. An ID typically consists of a single or multiple masses constrained between two or more stops and attached to a primary system to be controlled. The latest developed type in the IDs family is the linear particle chain (LPC) ID. It consists of a linear arrangement of two sizes of freely moving masses, constrained by two stops. The high number of impacts among the damper masses leads to rapid energy dissipation compared to the common IDs. This paper presents an experimental study on the effectiveness of the LPC ID in reducing the vibrations of a single degree-of-freedom (SDOF) frame structure under different shock excitations. Prototypes of the LPC and conventional IDs with different geometric parameters are fabricated. The structure is excited by either an impact at the top floor or pulses at its base. The damping effect of the LPC ID is compared with that of conventional IDs. The experimental outcomes clearly show that the LPC ID can effectively reduce the response of simple structures under shock excitation. Additional investigations are conducted to examine the LPC ID sensitivity to the main damper parameters, such as the chain length, damper mass ratio, and damper clearance.

UR - http://www.scopus.com/inward/record.url?scp=84943591932&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84943591932&partnerID=8YFLogxK

U2 - 10.1115/1.4031406

DO - 10.1115/1.4031406

M3 - Article

AN - SCOPUS:84943591932

VL - 137

JO - Journal of Vibration and Acoustics, Transactions of the ASME

JF - Journal of Vibration and Acoustics, Transactions of the ASME

SN - 1048-9002

IS - 6

M1 - 061012

ER -