RNAi-mediated HuR Depletion Leads to the Inhibition of Muscle Cell Differentiation

Kate Van Der Giessen, Sergio Di-Marco, Eveline Clair, Imed Gallouzi

Research output: Contribution to journalArticle

92 Citations (Scopus)

Abstract

The formation of muscle fibers involves the sequential expression of many proteins that regulate key steps during myoblast-to-myotube transition. MyoD, myogenin, and the cyclin-dependent kinase inhibitor p21cip1 are major players in the initiation and maintenance of the differentiated state of mouse embryonic muscle cells (C2C12). The messenger RNAs encoding these three proteins contain typical AU-rich elements (AREs) in their 3′-untranslated regions (3′-UTRs), which are known to affect the half-life of many short-lived mRNAs. HuR, an RNA-binding protein that regulates both the stability and cellular movement of ARE-containing mRNAs, interacts and stabilizes the p21cip1 message under UV stress in human RKO colorectal carcinoma cells. Here, by the use of gel shift experiments and immunoprecipitation followed by reverse transcription-PCR analysis, we show that HuR interacts with MyoD, myogenin, and p21cip1 mRNAs through specific sequences in their 3′-UTRs. To demonstrate the implication of endogenous HuR in myogenesis, we knocked down its expression in myoblasts using RNA interference and observed a significant reduction of HuR expression, associated with complete inhibition of myogenesis. Moreover, the expression of MyoD and myogenin mRNAs, as well as proteins, is significantly reduced in the HuR knockdown C2C12 cells. We were able to completely re-establish the myogenic process of these defective cells by introducing back HuR protein conjugated to a cell-permeable peptide. Finally, HuR accumulates in the cytoplasm during myogenesis. Thus, our results clearly demonstrated that endogenous HuR plays a crucial role in muscle differentiation by regulating the expression and/or the nuclear export of ARE-containing mRNAs that are essential for this process.

Original languageEnglish
Pages (from-to)47119-47128
Number of pages10
JournalJournal of Biological Chemistry
Volume278
Issue number47
DOIs
Publication statusPublished - 21 Nov 2003
Externally publishedYes

Fingerprint

RNA Interference
Muscle Cells
Muscle
Cell Differentiation
AU Rich Elements
Cells
Myogenin
Messenger RNA
Muscle Development
Myoblasts
3' Untranslated Regions
Muscles
Proteins
RNA-Binding Proteins
Cell Nucleus Active Transport
Cyclin-Dependent Kinases
Skeletal Muscle Fibers
Transcription
Immunoprecipitation
Reverse Transcription

ASJC Scopus subject areas

  • Biochemistry

Cite this

RNAi-mediated HuR Depletion Leads to the Inhibition of Muscle Cell Differentiation. / Van Der Giessen, Kate; Di-Marco, Sergio; Clair, Eveline; Gallouzi, Imed.

In: Journal of Biological Chemistry, Vol. 278, No. 47, 21.11.2003, p. 47119-47128.

Research output: Contribution to journalArticle

Van Der Giessen, Kate ; Di-Marco, Sergio ; Clair, Eveline ; Gallouzi, Imed. / RNAi-mediated HuR Depletion Leads to the Inhibition of Muscle Cell Differentiation. In: Journal of Biological Chemistry. 2003 ; Vol. 278, No. 47. pp. 47119-47128.
@article{4b5a72a37e6e4d4f9e7b12649bb3a8af,
title = "RNAi-mediated HuR Depletion Leads to the Inhibition of Muscle Cell Differentiation",
abstract = "The formation of muscle fibers involves the sequential expression of many proteins that regulate key steps during myoblast-to-myotube transition. MyoD, myogenin, and the cyclin-dependent kinase inhibitor p21cip1 are major players in the initiation and maintenance of the differentiated state of mouse embryonic muscle cells (C2C12). The messenger RNAs encoding these three proteins contain typical AU-rich elements (AREs) in their 3′-untranslated regions (3′-UTRs), which are known to affect the half-life of many short-lived mRNAs. HuR, an RNA-binding protein that regulates both the stability and cellular movement of ARE-containing mRNAs, interacts and stabilizes the p21cip1 message under UV stress in human RKO colorectal carcinoma cells. Here, by the use of gel shift experiments and immunoprecipitation followed by reverse transcription-PCR analysis, we show that HuR interacts with MyoD, myogenin, and p21cip1 mRNAs through specific sequences in their 3′-UTRs. To demonstrate the implication of endogenous HuR in myogenesis, we knocked down its expression in myoblasts using RNA interference and observed a significant reduction of HuR expression, associated with complete inhibition of myogenesis. Moreover, the expression of MyoD and myogenin mRNAs, as well as proteins, is significantly reduced in the HuR knockdown C2C12 cells. We were able to completely re-establish the myogenic process of these defective cells by introducing back HuR protein conjugated to a cell-permeable peptide. Finally, HuR accumulates in the cytoplasm during myogenesis. Thus, our results clearly demonstrated that endogenous HuR plays a crucial role in muscle differentiation by regulating the expression and/or the nuclear export of ARE-containing mRNAs that are essential for this process.",
author = "{Van Der Giessen}, Kate and Sergio Di-Marco and Eveline Clair and Imed Gallouzi",
year = "2003",
month = "11",
day = "21",
doi = "10.1074/jbc.M308889200",
language = "English",
volume = "278",
pages = "47119--47128",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "47",

}

TY - JOUR

T1 - RNAi-mediated HuR Depletion Leads to the Inhibition of Muscle Cell Differentiation

AU - Van Der Giessen, Kate

AU - Di-Marco, Sergio

AU - Clair, Eveline

AU - Gallouzi, Imed

PY - 2003/11/21

Y1 - 2003/11/21

N2 - The formation of muscle fibers involves the sequential expression of many proteins that regulate key steps during myoblast-to-myotube transition. MyoD, myogenin, and the cyclin-dependent kinase inhibitor p21cip1 are major players in the initiation and maintenance of the differentiated state of mouse embryonic muscle cells (C2C12). The messenger RNAs encoding these three proteins contain typical AU-rich elements (AREs) in their 3′-untranslated regions (3′-UTRs), which are known to affect the half-life of many short-lived mRNAs. HuR, an RNA-binding protein that regulates both the stability and cellular movement of ARE-containing mRNAs, interacts and stabilizes the p21cip1 message under UV stress in human RKO colorectal carcinoma cells. Here, by the use of gel shift experiments and immunoprecipitation followed by reverse transcription-PCR analysis, we show that HuR interacts with MyoD, myogenin, and p21cip1 mRNAs through specific sequences in their 3′-UTRs. To demonstrate the implication of endogenous HuR in myogenesis, we knocked down its expression in myoblasts using RNA interference and observed a significant reduction of HuR expression, associated with complete inhibition of myogenesis. Moreover, the expression of MyoD and myogenin mRNAs, as well as proteins, is significantly reduced in the HuR knockdown C2C12 cells. We were able to completely re-establish the myogenic process of these defective cells by introducing back HuR protein conjugated to a cell-permeable peptide. Finally, HuR accumulates in the cytoplasm during myogenesis. Thus, our results clearly demonstrated that endogenous HuR plays a crucial role in muscle differentiation by regulating the expression and/or the nuclear export of ARE-containing mRNAs that are essential for this process.

AB - The formation of muscle fibers involves the sequential expression of many proteins that regulate key steps during myoblast-to-myotube transition. MyoD, myogenin, and the cyclin-dependent kinase inhibitor p21cip1 are major players in the initiation and maintenance of the differentiated state of mouse embryonic muscle cells (C2C12). The messenger RNAs encoding these three proteins contain typical AU-rich elements (AREs) in their 3′-untranslated regions (3′-UTRs), which are known to affect the half-life of many short-lived mRNAs. HuR, an RNA-binding protein that regulates both the stability and cellular movement of ARE-containing mRNAs, interacts and stabilizes the p21cip1 message under UV stress in human RKO colorectal carcinoma cells. Here, by the use of gel shift experiments and immunoprecipitation followed by reverse transcription-PCR analysis, we show that HuR interacts with MyoD, myogenin, and p21cip1 mRNAs through specific sequences in their 3′-UTRs. To demonstrate the implication of endogenous HuR in myogenesis, we knocked down its expression in myoblasts using RNA interference and observed a significant reduction of HuR expression, associated with complete inhibition of myogenesis. Moreover, the expression of MyoD and myogenin mRNAs, as well as proteins, is significantly reduced in the HuR knockdown C2C12 cells. We were able to completely re-establish the myogenic process of these defective cells by introducing back HuR protein conjugated to a cell-permeable peptide. Finally, HuR accumulates in the cytoplasm during myogenesis. Thus, our results clearly demonstrated that endogenous HuR plays a crucial role in muscle differentiation by regulating the expression and/or the nuclear export of ARE-containing mRNAs that are essential for this process.

UR - http://www.scopus.com/inward/record.url?scp=0344875497&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0344875497&partnerID=8YFLogxK

U2 - 10.1074/jbc.M308889200

DO - 10.1074/jbc.M308889200

M3 - Article

VL - 278

SP - 47119

EP - 47128

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 47

ER -