Risk factors associated with corneal nerve alteration in type 1 diabetes in the absence of neuropathy: A longitudinal in vivo corneal confocal microscopy study

Cirous Dehghani, Nicola Pritchard, Katie Edwards, Anthony W. Russell, Rayaz Malik, Nathan Efron

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Purpose: The aim of this study was to determine alterations to the corneal subbasal nerve plexus (SNP) over 4 years using in vivo corneal confocal microscopy in participants with type 1 diabetes and to identify significant risk factors associated with these alterations. Methods: A cohort of 108 individuals with type 1 diabetes and no evidence of peripheral neuropathy at enrollment underwent laserscanning in vivo corneal confocal microscopy, ocular screening, and health and metabolic assessment at baseline, and the examinations continued for 4 subsequent annual visits. At each annual visit, 8 central corneal images of the SNP were selected and analyzed to quantify corneal nerve fiber density, corneal nerve branch density and corneal nerve fiber length. Linear mixed model approaches were fitted to examine the relationship between risk factors and corneal nerve parameters. Results: A total of 96 participants completed the final visit and 91 participants completed all visits. No significant relationships were found between corneal nerve parameters and time, sex, duration of diabetes, smoking, alcohol consumption, blood pressure, or body mass index. However, corneal nerve fiber density was negatively associated with glycated hemoglobin (β = 20.76, P < 0.01) and age (β = 20.13, P < 0.01) and positively related to high-density lipids (β = 2.01, P = 0.03). Higher glycated hemoglobin (β = 21.58, P = 0.04) and age (β = 20.23, P < 0.01) also negatively impacted corneal nerve branch density. Corneal nerve fiber length was only affected by higher age (β = 20.06, P < 0.01). Conclusions: Glycemic control, high-density lipid, and age have significant effects on SNP structure. These findings highlight the importance of diabetic management to prevent corneal nerve damage and the capability of in vivo corneal confocal microscopy for monitoring subclinical alterations in the corneal SNP in diabetes.

Original languageEnglish
Pages (from-to)847-852
Number of pages6
JournalCornea
Volume35
Issue number6
DOIs
Publication statusPublished - 2016

Fingerprint

Type 1 Diabetes Mellitus
Nerve Fibers
Confocal Microscopy
Glycosylated Hemoglobin A
Lipids
Peripheral Nervous System Diseases
Alcohol Drinking
Linear Models
Body Mass Index
Smoking
Blood Pressure
Health
hemoglobin P

Keywords

  • Corneal confocal microscopy
  • Corneal nerve morphology
  • Diabetic corneal neuropathy
  • Risk factors

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Risk factors associated with corneal nerve alteration in type 1 diabetes in the absence of neuropathy : A longitudinal in vivo corneal confocal microscopy study. / Dehghani, Cirous; Pritchard, Nicola; Edwards, Katie; Russell, Anthony W.; Malik, Rayaz; Efron, Nathan.

In: Cornea, Vol. 35, No. 6, 2016, p. 847-852.

Research output: Contribution to journalArticle

Dehghani, Cirous ; Pritchard, Nicola ; Edwards, Katie ; Russell, Anthony W. ; Malik, Rayaz ; Efron, Nathan. / Risk factors associated with corneal nerve alteration in type 1 diabetes in the absence of neuropathy : A longitudinal in vivo corneal confocal microscopy study. In: Cornea. 2016 ; Vol. 35, No. 6. pp. 847-852.
@article{4dc27520ead44c9287f4c7a656f90c72,
title = "Risk factors associated with corneal nerve alteration in type 1 diabetes in the absence of neuropathy: A longitudinal in vivo corneal confocal microscopy study",
abstract = "Purpose: The aim of this study was to determine alterations to the corneal subbasal nerve plexus (SNP) over 4 years using in vivo corneal confocal microscopy in participants with type 1 diabetes and to identify significant risk factors associated with these alterations. Methods: A cohort of 108 individuals with type 1 diabetes and no evidence of peripheral neuropathy at enrollment underwent laserscanning in vivo corneal confocal microscopy, ocular screening, and health and metabolic assessment at baseline, and the examinations continued for 4 subsequent annual visits. At each annual visit, 8 central corneal images of the SNP were selected and analyzed to quantify corneal nerve fiber density, corneal nerve branch density and corneal nerve fiber length. Linear mixed model approaches were fitted to examine the relationship between risk factors and corneal nerve parameters. Results: A total of 96 participants completed the final visit and 91 participants completed all visits. No significant relationships were found between corneal nerve parameters and time, sex, duration of diabetes, smoking, alcohol consumption, blood pressure, or body mass index. However, corneal nerve fiber density was negatively associated with glycated hemoglobin (β = 20.76, P < 0.01) and age (β = 20.13, P < 0.01) and positively related to high-density lipids (β = 2.01, P = 0.03). Higher glycated hemoglobin (β = 21.58, P = 0.04) and age (β = 20.23, P < 0.01) also negatively impacted corneal nerve branch density. Corneal nerve fiber length was only affected by higher age (β = 20.06, P < 0.01). Conclusions: Glycemic control, high-density lipid, and age have significant effects on SNP structure. These findings highlight the importance of diabetic management to prevent corneal nerve damage and the capability of in vivo corneal confocal microscopy for monitoring subclinical alterations in the corneal SNP in diabetes.",
keywords = "Corneal confocal microscopy, Corneal nerve morphology, Diabetic corneal neuropathy, Risk factors",
author = "Cirous Dehghani and Nicola Pritchard and Katie Edwards and Russell, {Anthony W.} and Rayaz Malik and Nathan Efron",
year = "2016",
doi = "10.1097/ICO.0000000000000760",
language = "English",
volume = "35",
pages = "847--852",
journal = "Cornea",
issn = "0277-3740",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Risk factors associated with corneal nerve alteration in type 1 diabetes in the absence of neuropathy

T2 - A longitudinal in vivo corneal confocal microscopy study

AU - Dehghani, Cirous

AU - Pritchard, Nicola

AU - Edwards, Katie

AU - Russell, Anthony W.

AU - Malik, Rayaz

AU - Efron, Nathan

PY - 2016

Y1 - 2016

N2 - Purpose: The aim of this study was to determine alterations to the corneal subbasal nerve plexus (SNP) over 4 years using in vivo corneal confocal microscopy in participants with type 1 diabetes and to identify significant risk factors associated with these alterations. Methods: A cohort of 108 individuals with type 1 diabetes and no evidence of peripheral neuropathy at enrollment underwent laserscanning in vivo corneal confocal microscopy, ocular screening, and health and metabolic assessment at baseline, and the examinations continued for 4 subsequent annual visits. At each annual visit, 8 central corneal images of the SNP were selected and analyzed to quantify corneal nerve fiber density, corneal nerve branch density and corneal nerve fiber length. Linear mixed model approaches were fitted to examine the relationship between risk factors and corneal nerve parameters. Results: A total of 96 participants completed the final visit and 91 participants completed all visits. No significant relationships were found between corneal nerve parameters and time, sex, duration of diabetes, smoking, alcohol consumption, blood pressure, or body mass index. However, corneal nerve fiber density was negatively associated with glycated hemoglobin (β = 20.76, P < 0.01) and age (β = 20.13, P < 0.01) and positively related to high-density lipids (β = 2.01, P = 0.03). Higher glycated hemoglobin (β = 21.58, P = 0.04) and age (β = 20.23, P < 0.01) also negatively impacted corneal nerve branch density. Corneal nerve fiber length was only affected by higher age (β = 20.06, P < 0.01). Conclusions: Glycemic control, high-density lipid, and age have significant effects on SNP structure. These findings highlight the importance of diabetic management to prevent corneal nerve damage and the capability of in vivo corneal confocal microscopy for monitoring subclinical alterations in the corneal SNP in diabetes.

AB - Purpose: The aim of this study was to determine alterations to the corneal subbasal nerve plexus (SNP) over 4 years using in vivo corneal confocal microscopy in participants with type 1 diabetes and to identify significant risk factors associated with these alterations. Methods: A cohort of 108 individuals with type 1 diabetes and no evidence of peripheral neuropathy at enrollment underwent laserscanning in vivo corneal confocal microscopy, ocular screening, and health and metabolic assessment at baseline, and the examinations continued for 4 subsequent annual visits. At each annual visit, 8 central corneal images of the SNP were selected and analyzed to quantify corneal nerve fiber density, corneal nerve branch density and corneal nerve fiber length. Linear mixed model approaches were fitted to examine the relationship between risk factors and corneal nerve parameters. Results: A total of 96 participants completed the final visit and 91 participants completed all visits. No significant relationships were found between corneal nerve parameters and time, sex, duration of diabetes, smoking, alcohol consumption, blood pressure, or body mass index. However, corneal nerve fiber density was negatively associated with glycated hemoglobin (β = 20.76, P < 0.01) and age (β = 20.13, P < 0.01) and positively related to high-density lipids (β = 2.01, P = 0.03). Higher glycated hemoglobin (β = 21.58, P = 0.04) and age (β = 20.23, P < 0.01) also negatively impacted corneal nerve branch density. Corneal nerve fiber length was only affected by higher age (β = 20.06, P < 0.01). Conclusions: Glycemic control, high-density lipid, and age have significant effects on SNP structure. These findings highlight the importance of diabetic management to prevent corneal nerve damage and the capability of in vivo corneal confocal microscopy for monitoring subclinical alterations in the corneal SNP in diabetes.

KW - Corneal confocal microscopy

KW - Corneal nerve morphology

KW - Diabetic corneal neuropathy

KW - Risk factors

UR - http://www.scopus.com/inward/record.url?scp=84957613069&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84957613069&partnerID=8YFLogxK

U2 - 10.1097/ICO.0000000000000760

DO - 10.1097/ICO.0000000000000760

M3 - Article

C2 - 26845318

AN - SCOPUS:84957613069

VL - 35

SP - 847

EP - 852

JO - Cornea

JF - Cornea

SN - 0277-3740

IS - 6

ER -