Rheem: Enabling multi-platform task execution

Divy Agrawal, Lamine Ba, Laure Berti-Equille, Sanjay Chawla, Ahmed Elmagarmid, Hossam Hammady, Yasser Idris, Zoi Kaoudi, Zuhair Khayyat, Sebastian Kruse, Mourad Ouzzani, Paolo Papotti, Jorge Arnulfo Quiane Ruiz, Nan Tang, Mohammed J. Zaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)

Abstract

Many emerging applications, from domains such as healthcare and oil & gas, require several data processing systems for complex analytics. This demo paper showcases Rheem, a framework that provides multi-platform task execution for such applications. It features a three-layer data processing abstraction and a new query optimization approach for multi-platform settings. We will demonstrate the strengths of Rheem by using real-world scenarios from three different applications, namely, machine learning, data cleaning, and data fusion.

Original languageEnglish
Title of host publicationSIGMOD 2016 - Proceedings of the 2016 International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages2069-2072
Number of pages4
Volume26-June-2016
ISBN (Electronic)9781450335317
DOIs
Publication statusPublished - 26 Jun 2016
Event2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016 - San Francisco, United States
Duration: 26 Jun 20161 Jul 2016

Other

Other2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016
CountryUnited States
CitySan Francisco
Period26/6/161/7/16

    Fingerprint

ASJC Scopus subject areas

  • Software
  • Information Systems

Cite this

Agrawal, D., Ba, L., Berti-Equille, L., Chawla, S., Elmagarmid, A., Hammady, H., Idris, Y., Kaoudi, Z., Khayyat, Z., Kruse, S., Ouzzani, M., Papotti, P., Quiane Ruiz, J. A., Tang, N., & Zaki, M. J. (2016). Rheem: Enabling multi-platform task execution. In SIGMOD 2016 - Proceedings of the 2016 International Conference on Management of Data (Vol. 26-June-2016, pp. 2069-2072). Association for Computing Machinery. https://doi.org/10.1145/2882903.2899414