Reversal of CPT-11 resistance of lung cancer cells by adenovirus- mediated gene transfer of the human carboxylesterase cDNA

Akira Kojima, Neil R. Hackett, Ronald Crystal

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

To evaluate the concept that transfer of the human carboxylesterase (CE) gene will overcome the drug resistance of a solid tumor to CPT-11 (irinotecan), we used an adenovirus vector (AdCMV.CE) carrying human CE cDNA to infect CPT-11-resistant A549 human adenocarcinoma cells (A549/CPT) in vitro and in vivo and evaluated cell growth over time. The A549/CPT cells, selected by stepwise and continuous exposure of parental A549 cells to CPT- 11 over 10 months, had a 6-fold resistance to CPT-11 and 42% CE activity in comparison with parental A549 cells. AdCMV.CE infection resulted in an increase in functional CE protein in resistant cells in vitro that was sufficient to convert CPT-11 to its active metabolite, SN-38, and effectively suppressed resistant cell growth in vitro in the presence of CPT-11. When AdCMV.CE was directly injected into established s.c. resistant A549-based tumors in nude mice receiving CPT-11, there was a 1.8-fold reduction in tumor size at day 20 compared to that of controls (P < 0.05). These observations suggest that adenovirus-mediated gene transfer of the human CE gene and concomitant administration of CPT-11 may have potential as a strategy for local control of acquired CPT-11 resistance of solid tumors.

Original languageEnglish
Pages (from-to)4368-4374
Number of pages7
JournalCancer Research
Volume58
Issue number19
Publication statusPublished - 1 Oct 1998
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this