Ranking agro-technical methods and environmental parameters in the biodegradation of petroleum-contaminated soils in Nigeria

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

A combination of experimental cells consisting of some agro-technical methods aimed at accelerating the biodegradation of petroleum contaminated soils were evaluated in order to ascertain the relevance of these methods and the relative attention due necessary soil environmental parameters. The methods of treatment involved the variation of tilling, watering and nutrient application, plus biopile and phytoremediation treatments. In the experiments described, petroleum contamination of soils was simulated under field conditions, the remedial treatments were then utilized for clean up. Analysis of soil parameters after a six-week study period showed an increase in total heterotrophic bacteria (THB) counts across all the treatments, with THB counts increasing with increment in soil nutrient level and initial concentration of the contaminant. The total hydrocarbon content (THC) analysis, based on a performance index introduced in this study, indicated that on the average, the variation of nutrient application, tilling and watering facilitated the attenuation of THC at the rate of 429.4 mg/kg day, 653.2 mg/kg day, and 327.5 mg/kg day respectively. While the combined effect of various levels of nutrients, tiling and watering performed at the rate of 558.7 mg/kg day, biopile and phytoremediation treatments recorded 427.9 mg/kg day and 489.3 mg/kg day respectively. These results imply that though nutrient application, watering and other factors affect the biodegradation process, frequent tilling for maximum oxygen exposure is the most important factor that affects the biodegradation of petroleum-hydrocarbons in tropical soils.

Original languageEnglish
JournalElectronic Journal of Biotechnology
Volume11
Issue number1
DOIs
Publication statusPublished - 15 Jan 2008
Externally publishedYes

Fingerprint

Petroleum
Nigeria
Soil
Food
Hydrocarbons
Environmental Biodegradation
Bacteria
Oxygen

Keywords

  • Bioremediation methods
  • Performance index
  • Phytoremediation
  • Total hydrocarbon content

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology

Cite this

@article{d89b721f5a4e4164bc7e76c3beeabb46,
title = "Ranking agro-technical methods and environmental parameters in the biodegradation of petroleum-contaminated soils in Nigeria",
abstract = "A combination of experimental cells consisting of some agro-technical methods aimed at accelerating the biodegradation of petroleum contaminated soils were evaluated in order to ascertain the relevance of these methods and the relative attention due necessary soil environmental parameters. The methods of treatment involved the variation of tilling, watering and nutrient application, plus biopile and phytoremediation treatments. In the experiments described, petroleum contamination of soils was simulated under field conditions, the remedial treatments were then utilized for clean up. Analysis of soil parameters after a six-week study period showed an increase in total heterotrophic bacteria (THB) counts across all the treatments, with THB counts increasing with increment in soil nutrient level and initial concentration of the contaminant. The total hydrocarbon content (THC) analysis, based on a performance index introduced in this study, indicated that on the average, the variation of nutrient application, tilling and watering facilitated the attenuation of THC at the rate of 429.4 mg/kg day, 653.2 mg/kg day, and 327.5 mg/kg day respectively. While the combined effect of various levels of nutrients, tiling and watering performed at the rate of 558.7 mg/kg day, biopile and phytoremediation treatments recorded 427.9 mg/kg day and 489.3 mg/kg day respectively. These results imply that though nutrient application, watering and other factors affect the biodegradation process, frequent tilling for maximum oxygen exposure is the most important factor that affects the biodegradation of petroleum-hydrocarbons in tropical soils.",
keywords = "Bioremediation methods, Performance index, Phytoremediation, Total hydrocarbon content",
author = "Reginald Kogbara",
year = "2008",
month = "1",
day = "15",
doi = "10.2225/vol11-issue1-fulltext-4",
language = "English",
volume = "11",
journal = "Electronic Journal of Biotechnology",
issn = "0717-3458",
publisher = "Pontificia Universidad Catolica de Valparaiso",
number = "1",

}

TY - JOUR

T1 - Ranking agro-technical methods and environmental parameters in the biodegradation of petroleum-contaminated soils in Nigeria

AU - Kogbara, Reginald

PY - 2008/1/15

Y1 - 2008/1/15

N2 - A combination of experimental cells consisting of some agro-technical methods aimed at accelerating the biodegradation of petroleum contaminated soils were evaluated in order to ascertain the relevance of these methods and the relative attention due necessary soil environmental parameters. The methods of treatment involved the variation of tilling, watering and nutrient application, plus biopile and phytoremediation treatments. In the experiments described, petroleum contamination of soils was simulated under field conditions, the remedial treatments were then utilized for clean up. Analysis of soil parameters after a six-week study period showed an increase in total heterotrophic bacteria (THB) counts across all the treatments, with THB counts increasing with increment in soil nutrient level and initial concentration of the contaminant. The total hydrocarbon content (THC) analysis, based on a performance index introduced in this study, indicated that on the average, the variation of nutrient application, tilling and watering facilitated the attenuation of THC at the rate of 429.4 mg/kg day, 653.2 mg/kg day, and 327.5 mg/kg day respectively. While the combined effect of various levels of nutrients, tiling and watering performed at the rate of 558.7 mg/kg day, biopile and phytoremediation treatments recorded 427.9 mg/kg day and 489.3 mg/kg day respectively. These results imply that though nutrient application, watering and other factors affect the biodegradation process, frequent tilling for maximum oxygen exposure is the most important factor that affects the biodegradation of petroleum-hydrocarbons in tropical soils.

AB - A combination of experimental cells consisting of some agro-technical methods aimed at accelerating the biodegradation of petroleum contaminated soils were evaluated in order to ascertain the relevance of these methods and the relative attention due necessary soil environmental parameters. The methods of treatment involved the variation of tilling, watering and nutrient application, plus biopile and phytoremediation treatments. In the experiments described, petroleum contamination of soils was simulated under field conditions, the remedial treatments were then utilized for clean up. Analysis of soil parameters after a six-week study period showed an increase in total heterotrophic bacteria (THB) counts across all the treatments, with THB counts increasing with increment in soil nutrient level and initial concentration of the contaminant. The total hydrocarbon content (THC) analysis, based on a performance index introduced in this study, indicated that on the average, the variation of nutrient application, tilling and watering facilitated the attenuation of THC at the rate of 429.4 mg/kg day, 653.2 mg/kg day, and 327.5 mg/kg day respectively. While the combined effect of various levels of nutrients, tiling and watering performed at the rate of 558.7 mg/kg day, biopile and phytoremediation treatments recorded 427.9 mg/kg day and 489.3 mg/kg day respectively. These results imply that though nutrient application, watering and other factors affect the biodegradation process, frequent tilling for maximum oxygen exposure is the most important factor that affects the biodegradation of petroleum-hydrocarbons in tropical soils.

KW - Bioremediation methods

KW - Performance index

KW - Phytoremediation

KW - Total hydrocarbon content

UR - http://www.scopus.com/inward/record.url?scp=38349109994&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38349109994&partnerID=8YFLogxK

U2 - 10.2225/vol11-issue1-fulltext-4

DO - 10.2225/vol11-issue1-fulltext-4

M3 - Article

AN - SCOPUS:38349109994

VL - 11

JO - Electronic Journal of Biotechnology

JF - Electronic Journal of Biotechnology

SN - 0717-3458

IS - 1

ER -