Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium pH gradient electrophoresis and mass spectrometry

Lotfi Chouchane, Maria Kabbage, Karim Chahed, Bechr Hamrita, Christelle Lemaitre Guillier, Mounir Trimeche, Sami Remadi, Johan Hoebeke

Research output: Contribution to journalArticle

27 Citations (Scopus)


Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, α-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues.

Original languageEnglish
Article number564127
JournalJournal of Biomedicine and Biotechnology
Issue number1
Publication statusPublished - 23 Jul 2008


ASJC Scopus subject areas

  • Biotechnology
  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Health, Toxicology and Mutagenesis

Cite this