Performance analysis of a multitube vapor-anode AMTEC cell

Jean Michel Tournier, Mohamed S. El-Genk, Lianmin Huang, Michael Schuller

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A detailed AMTEC Performance and Evaluation Analysis Model (APEAM) was developed to predict the performance of next-generation Pluto Express vapor-anode multitube cells. APEAM incorporates an axial electrochemical model, which accounts for the effects of non-uniform axial temperature and vapor pressure profiles along the BASE tubes; a detailed vapor pressure loss model, which includes free-molecular, transition, and continuum flow regimes; and a comprehensive radiation/conduction model, which incorporates the effects of circumferential thermal shields above the BASE tubes and conduction studs between the hot end of the cell and the tubes support plate. Model results compared well with measured electrical power and experimental I-V characteristics of the PX-2C cell, recently tested at Phillips Laboratory. The cell peak electric power of 4.4. We occurred at an external load resistance of 3.0 ω. At higher load resistance (or lower load demand), the PX-2C cell was load-following. Results also showed that the vapor flow on the low-pressure side of PX-2C was in the transition regime. The evaporator wick provided the sodium flow rate (8 g/hour) necessary to operate the cell at an evaporator temperature of about 950 K. The model predicted that using a molybdenum thermal shield on the inside of the cell wall, near the condenser, would increase the cell electric power and conversion efficiency by approximately 23%.

Original languageEnglish
Pages (from-to)1172-1179
Number of pages8
JournalProceedings of the Intersociety Energy Conversion Engineering Conference
Volume2
Publication statusPublished - 1997
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Fuel Technology
  • Electrical and Electronic Engineering

Cite this