Ni-based nano-catalysts for the dry reforming of methane

Sardar Ali, Mahmoud M. Khader, Jaber Al Marri, Ahmed G. Abdelmoneim

Research output: Contribution to journalArticle

Abstract

Development of a highly efficient and coke-resistant, nickel based nano-catalyst in the carbon dioxide reformation of methane is reported. The alumina supported Ni-based catalyst with a metal loading of 5wt% was prepared via the solution combustion synthesis (SCS) method as well as the conventional wetness impregnation method. The synthesized catalysts were thoroughly characterized by a combination of analytical techniques including high-resolution electron microscopy (HRTEM-SAED), X-ray diffraction (XRD), nitrogen physisorption (BET surface area), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H 2 -TPR) and temperature programmed oxidation (TPO). Compared to the conventional nickel-impregnated (Ni-I) catalyst, the Ni-SCS nano-catalyst was superior in activity and stability during dry reformation of methane. Ni-SCS catalyst exhibited higher percentage conversions of methane and carbon dioxide. The percentage yields of hydrogen and carbon monoxide over Ni-SCS catalyst were also significantly higher. During the investigated period on stream for 50 h, the Ni-I catalyst deactivated severely, by contrast the Ni-SCS stayed active. It was clear from the results of elemental carbon analysis and TPO that deactivation of the Ni-I catalyst was due to severe carbon deposition, whereas the Ni-SCS catalyst exhibited minor carbon deposition. These differences in the catalytic activities and stabilities between the Ni-I and Ni-SCS catalysts were attributed to the difference in their physicochemical properties and chemical structure, as obvious from the results of the above mentioned analysis techniques. The XRD and XPS analysis revealed that the Ni-SCS nanocatalyst resulted in the formation of uniformly distributed nickel aluminates (NiAl 2 O 4 ) nano-crystallite spinels together with nickel oxide. The results of H 2 -TPR analysis clearly distinguished between NiO and NiAl 2 O 4 . H 2 -TPR affirmed the formation of NiAl 2 O 4 and NiO species on the SCS nanocatalyst but only NiO within the impregnation catalyst. In this regards the exceptionally high catalytic activity and stability of Ni-SCS nanocatalyst during dry reformation was attributed to the presence of NiAl 2 O 4 nano-crystallites structures. On the other hand, the presence of weakly associated NiO species on the Ni-I catalyst was responsible for decaying its activity due to carbon formation during the dry reformation of methane.

Original languageEnglish
JournalCatalysis Today
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Methane
Reforming reactions
Combustion synthesis
Catalysts
Nickel
Carbon
Carbon Dioxide
Impregnation
Catalyst activity
Carbon dioxide
X ray photoelectron spectroscopy
X ray diffraction
Oxidation
Physisorption
Nickel oxide
Aluminum Oxide
High resolution electron microscopy
Carbon Monoxide
Crystallites
Coke

Keywords

  • Coke resilience
  • Methane dry reforming
  • Solution combustion synthesis
  • Syn gas production

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Cite this

Ni-based nano-catalysts for the dry reforming of methane. / Ali, Sardar; Khader, Mahmoud M.; Al Marri, Jaber; Abdelmoneim, Ahmed G.

In: Catalysis Today, 01.01.2019.

Research output: Contribution to journalArticle

Ali, Sardar ; Khader, Mahmoud M. ; Al Marri, Jaber ; Abdelmoneim, Ahmed G. / Ni-based nano-catalysts for the dry reforming of methane. In: Catalysis Today. 2019.
@article{1602633c46154af482772a8f366f2308,
title = "Ni-based nano-catalysts for the dry reforming of methane",
abstract = "Development of a highly efficient and coke-resistant, nickel based nano-catalyst in the carbon dioxide reformation of methane is reported. The alumina supported Ni-based catalyst with a metal loading of 5wt{\%} was prepared via the solution combustion synthesis (SCS) method as well as the conventional wetness impregnation method. The synthesized catalysts were thoroughly characterized by a combination of analytical techniques including high-resolution electron microscopy (HRTEM-SAED), X-ray diffraction (XRD), nitrogen physisorption (BET surface area), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H 2 -TPR) and temperature programmed oxidation (TPO). Compared to the conventional nickel-impregnated (Ni-I) catalyst, the Ni-SCS nano-catalyst was superior in activity and stability during dry reformation of methane. Ni-SCS catalyst exhibited higher percentage conversions of methane and carbon dioxide. The percentage yields of hydrogen and carbon monoxide over Ni-SCS catalyst were also significantly higher. During the investigated period on stream for 50 h, the Ni-I catalyst deactivated severely, by contrast the Ni-SCS stayed active. It was clear from the results of elemental carbon analysis and TPO that deactivation of the Ni-I catalyst was due to severe carbon deposition, whereas the Ni-SCS catalyst exhibited minor carbon deposition. These differences in the catalytic activities and stabilities between the Ni-I and Ni-SCS catalysts were attributed to the difference in their physicochemical properties and chemical structure, as obvious from the results of the above mentioned analysis techniques. The XRD and XPS analysis revealed that the Ni-SCS nanocatalyst resulted in the formation of uniformly distributed nickel aluminates (NiAl 2 O 4 ) nano-crystallite spinels together with nickel oxide. The results of H 2 -TPR analysis clearly distinguished between NiO and NiAl 2 O 4 . H 2 -TPR affirmed the formation of NiAl 2 O 4 and NiO species on the SCS nanocatalyst but only NiO within the impregnation catalyst. In this regards the exceptionally high catalytic activity and stability of Ni-SCS nanocatalyst during dry reformation was attributed to the presence of NiAl 2 O 4 nano-crystallites structures. On the other hand, the presence of weakly associated NiO species on the Ni-I catalyst was responsible for decaying its activity due to carbon formation during the dry reformation of methane.",
keywords = "Coke resilience, Methane dry reforming, Solution combustion synthesis, Syn gas production",
author = "Sardar Ali and Khader, {Mahmoud M.} and {Al Marri}, Jaber and Abdelmoneim, {Ahmed G.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.cattod.2019.04.066",
language = "English",
journal = "Catalysis Today",
issn = "0920-5861",
publisher = "Elsevier",

}

TY - JOUR

T1 - Ni-based nano-catalysts for the dry reforming of methane

AU - Ali, Sardar

AU - Khader, Mahmoud M.

AU - Al Marri, Jaber

AU - Abdelmoneim, Ahmed G.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Development of a highly efficient and coke-resistant, nickel based nano-catalyst in the carbon dioxide reformation of methane is reported. The alumina supported Ni-based catalyst with a metal loading of 5wt% was prepared via the solution combustion synthesis (SCS) method as well as the conventional wetness impregnation method. The synthesized catalysts were thoroughly characterized by a combination of analytical techniques including high-resolution electron microscopy (HRTEM-SAED), X-ray diffraction (XRD), nitrogen physisorption (BET surface area), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H 2 -TPR) and temperature programmed oxidation (TPO). Compared to the conventional nickel-impregnated (Ni-I) catalyst, the Ni-SCS nano-catalyst was superior in activity and stability during dry reformation of methane. Ni-SCS catalyst exhibited higher percentage conversions of methane and carbon dioxide. The percentage yields of hydrogen and carbon monoxide over Ni-SCS catalyst were also significantly higher. During the investigated period on stream for 50 h, the Ni-I catalyst deactivated severely, by contrast the Ni-SCS stayed active. It was clear from the results of elemental carbon analysis and TPO that deactivation of the Ni-I catalyst was due to severe carbon deposition, whereas the Ni-SCS catalyst exhibited minor carbon deposition. These differences in the catalytic activities and stabilities between the Ni-I and Ni-SCS catalysts were attributed to the difference in their physicochemical properties and chemical structure, as obvious from the results of the above mentioned analysis techniques. The XRD and XPS analysis revealed that the Ni-SCS nanocatalyst resulted in the formation of uniformly distributed nickel aluminates (NiAl 2 O 4 ) nano-crystallite spinels together with nickel oxide. The results of H 2 -TPR analysis clearly distinguished between NiO and NiAl 2 O 4 . H 2 -TPR affirmed the formation of NiAl 2 O 4 and NiO species on the SCS nanocatalyst but only NiO within the impregnation catalyst. In this regards the exceptionally high catalytic activity and stability of Ni-SCS nanocatalyst during dry reformation was attributed to the presence of NiAl 2 O 4 nano-crystallites structures. On the other hand, the presence of weakly associated NiO species on the Ni-I catalyst was responsible for decaying its activity due to carbon formation during the dry reformation of methane.

AB - Development of a highly efficient and coke-resistant, nickel based nano-catalyst in the carbon dioxide reformation of methane is reported. The alumina supported Ni-based catalyst with a metal loading of 5wt% was prepared via the solution combustion synthesis (SCS) method as well as the conventional wetness impregnation method. The synthesized catalysts were thoroughly characterized by a combination of analytical techniques including high-resolution electron microscopy (HRTEM-SAED), X-ray diffraction (XRD), nitrogen physisorption (BET surface area), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H 2 -TPR) and temperature programmed oxidation (TPO). Compared to the conventional nickel-impregnated (Ni-I) catalyst, the Ni-SCS nano-catalyst was superior in activity and stability during dry reformation of methane. Ni-SCS catalyst exhibited higher percentage conversions of methane and carbon dioxide. The percentage yields of hydrogen and carbon monoxide over Ni-SCS catalyst were also significantly higher. During the investigated period on stream for 50 h, the Ni-I catalyst deactivated severely, by contrast the Ni-SCS stayed active. It was clear from the results of elemental carbon analysis and TPO that deactivation of the Ni-I catalyst was due to severe carbon deposition, whereas the Ni-SCS catalyst exhibited minor carbon deposition. These differences in the catalytic activities and stabilities between the Ni-I and Ni-SCS catalysts were attributed to the difference in their physicochemical properties and chemical structure, as obvious from the results of the above mentioned analysis techniques. The XRD and XPS analysis revealed that the Ni-SCS nanocatalyst resulted in the formation of uniformly distributed nickel aluminates (NiAl 2 O 4 ) nano-crystallite spinels together with nickel oxide. The results of H 2 -TPR analysis clearly distinguished between NiO and NiAl 2 O 4 . H 2 -TPR affirmed the formation of NiAl 2 O 4 and NiO species on the SCS nanocatalyst but only NiO within the impregnation catalyst. In this regards the exceptionally high catalytic activity and stability of Ni-SCS nanocatalyst during dry reformation was attributed to the presence of NiAl 2 O 4 nano-crystallites structures. On the other hand, the presence of weakly associated NiO species on the Ni-I catalyst was responsible for decaying its activity due to carbon formation during the dry reformation of methane.

KW - Coke resilience

KW - Methane dry reforming

KW - Solution combustion synthesis

KW - Syn gas production

UR - http://www.scopus.com/inward/record.url?scp=85064480884&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064480884&partnerID=8YFLogxK

U2 - 10.1016/j.cattod.2019.04.066

DO - 10.1016/j.cattod.2019.04.066

M3 - Article

JO - Catalysis Today

JF - Catalysis Today

SN - 0920-5861

ER -