Abstract

Multiscale wavelet-based representation of data has been shown to be a powerful tool in feature extraction from practical process data. In this paper, this characteristic of multiscale representation is utilized to improve the prediction accuracy of some of the latent variable regression models, such as Principal Component Regression (PCR) and Partial Least Squares (PLS), by developing a multiscale latent variable regression (MSLVR) modeling algorithm. The idea is to decompose the input-output data at multiple scales using wavelet and scaling functions, construct multiple latent variable regression models at multiple scales using the scaled signal approximations of the data and then using cross-validation, and select among all MSLVR models the model which best describes the process. The main advantage of the MSLVR modeling algorithm is that it inherently accounts for the presence of measurement noise in the data by the application of the low-pass filters used in multiscale decomposition, which in turn improves the model robustness to measurement noise and enhances its prediction accuracy. The advantages of the developed MSLVR modeling algorithm are demonstrated using a simulated inferential model which predicts the distillate composition from measurements of some of the trays' temperatures.

Original languageEnglish
Article number935315
JournalInternational Journal of Chemical Engineering
DOIs
Publication statusPublished - 2010

Fingerprint

Low pass filters
Feature extraction
Decomposition
Chemical analysis
Temperature

ASJC Scopus subject areas

  • Chemical Engineering(all)

Cite this

@article{d81e6aaaf5fe40cc8c3a8c319a79fd97,
title = "Multiscale latent variable regression",
abstract = "Multiscale wavelet-based representation of data has been shown to be a powerful tool in feature extraction from practical process data. In this paper, this characteristic of multiscale representation is utilized to improve the prediction accuracy of some of the latent variable regression models, such as Principal Component Regression (PCR) and Partial Least Squares (PLS), by developing a multiscale latent variable regression (MSLVR) modeling algorithm. The idea is to decompose the input-output data at multiple scales using wavelet and scaling functions, construct multiple latent variable regression models at multiple scales using the scaled signal approximations of the data and then using cross-validation, and select among all MSLVR models the model which best describes the process. The main advantage of the MSLVR modeling algorithm is that it inherently accounts for the presence of measurement noise in the data by the application of the low-pass filters used in multiscale decomposition, which in turn improves the model robustness to measurement noise and enhances its prediction accuracy. The advantages of the developed MSLVR modeling algorithm are demonstrated using a simulated inferential model which predicts the distillate composition from measurements of some of the trays' temperatures.",
author = "Mohamed Nounou and Hazem Nounou",
year = "2010",
doi = "10.1155/2010/935315",
language = "English",
journal = "International Journal of Chemical Engineering",
issn = "1687-806X",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Multiscale latent variable regression

AU - Nounou, Mohamed

AU - Nounou, Hazem

PY - 2010

Y1 - 2010

N2 - Multiscale wavelet-based representation of data has been shown to be a powerful tool in feature extraction from practical process data. In this paper, this characteristic of multiscale representation is utilized to improve the prediction accuracy of some of the latent variable regression models, such as Principal Component Regression (PCR) and Partial Least Squares (PLS), by developing a multiscale latent variable regression (MSLVR) modeling algorithm. The idea is to decompose the input-output data at multiple scales using wavelet and scaling functions, construct multiple latent variable regression models at multiple scales using the scaled signal approximations of the data and then using cross-validation, and select among all MSLVR models the model which best describes the process. The main advantage of the MSLVR modeling algorithm is that it inherently accounts for the presence of measurement noise in the data by the application of the low-pass filters used in multiscale decomposition, which in turn improves the model robustness to measurement noise and enhances its prediction accuracy. The advantages of the developed MSLVR modeling algorithm are demonstrated using a simulated inferential model which predicts the distillate composition from measurements of some of the trays' temperatures.

AB - Multiscale wavelet-based representation of data has been shown to be a powerful tool in feature extraction from practical process data. In this paper, this characteristic of multiscale representation is utilized to improve the prediction accuracy of some of the latent variable regression models, such as Principal Component Regression (PCR) and Partial Least Squares (PLS), by developing a multiscale latent variable regression (MSLVR) modeling algorithm. The idea is to decompose the input-output data at multiple scales using wavelet and scaling functions, construct multiple latent variable regression models at multiple scales using the scaled signal approximations of the data and then using cross-validation, and select among all MSLVR models the model which best describes the process. The main advantage of the MSLVR modeling algorithm is that it inherently accounts for the presence of measurement noise in the data by the application of the low-pass filters used in multiscale decomposition, which in turn improves the model robustness to measurement noise and enhances its prediction accuracy. The advantages of the developed MSLVR modeling algorithm are demonstrated using a simulated inferential model which predicts the distillate composition from measurements of some of the trays' temperatures.

UR - http://www.scopus.com/inward/record.url?scp=77951685428&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951685428&partnerID=8YFLogxK

U2 - 10.1155/2010/935315

DO - 10.1155/2010/935315

M3 - Article

AN - SCOPUS:77951685428

JO - International Journal of Chemical Engineering

JF - International Journal of Chemical Engineering

SN - 1687-806X

M1 - 935315

ER -