Monte Carlo simulation to reveal the copper dissolution kinetics of an ion selective electrode based on copper sulfide

Hassane Boudouh, Rachid Essehli, Sofiane Guessasma, Abdelkader Aissat

Research output: Contribution to journalArticle

1 Citation (Scopus)


The present work aims at studying copper dissolution of a Cu 2+ ion-selective electrode based on a CuS thin film. The electrode is prepared using electrochemical deposition of CuS on a silicon substrate. The obtained film exhibits an apparent cohesive granular structure with an average grain size of about 33 μm, a small porosity content (<4%) and a thickness of about 7.48 μm. The Cu 2+ electrochemical response shows a nearly Nernstian behavior in the range of pCu 6-1. The copper dissolution is experimentally studied in a wide pH range. In order to quantitatively predict copper mass dissolution, an original numerical model is developed based on Monte Carlo simulation. Our main hypothesis is based on dissolution probability that triggers the whole dissolution process through solution/electrode surface exchanges. Several probability forms are suggested accounting for the real observed electrochemical kinetics. The experimental results show that, under a low pH, the dissolution process severely leads to the consumption of large material. Moreover, our predictions suggest a dissolution profile as a two-stage process irrespective of pH. Our numerical model is able to fit correctly the observed kinetics considering an exponential probability form under all pH conditions.

Original languageEnglish
Pages (from-to)383-391
Number of pages9
JournalMaterials Chemistry and Physics
Issue number1
Publication statusPublished - 15 Mar 2012



  • A. Thin films
  • B. Monte Carlo Method
  • C. Electrochemical techniques
  • Mass spectroscopy

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics

Cite this