Measurement of the double-differential inclusive jet cross section in proton–proton collisions at √s = 13 TeV

The CMS collaboration

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity | y| is presented. The analysis is based on proton–proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13TeV. The data samples correspond to integrated luminosities of 71 and 44pb-1 for | y| < 3 and 3.2 < | y| < 4.7 , respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2TeV and jet rapidity up to | y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at s=13TeV as at smaller centre-of-mass energies.

Original languageEnglish
Article number451
JournalEuropean Physical Journal C
Volume76
Issue number8
DOIs
Publication statusPublished - 1 Aug 2016
Externally publishedYes

Fingerprint

collisions
cross sections
center of mass
predictions
Clustering algorithms
transverse momentum
partons
Luminance
Momentum
indication
coverings
generators
Physics
quantum chromodynamics
luminosity
physics
energy
Experiments
interactions

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this

Measurement of the double-differential inclusive jet cross section in proton–proton collisions at √s = 13 TeV. / The CMS collaboration.

In: European Physical Journal C, Vol. 76, No. 8, 451, 01.08.2016.

Research output: Contribution to journalArticle

@article{3f4755856ef14729ba0ae4844f811d2a,
title = "Measurement of the double-differential inclusive jet cross section in proton–proton collisions at √s = 13 TeV",
abstract = "A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity | y| is presented. The analysis is based on proton–proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13TeV. The data samples correspond to integrated luminosities of 71 and 44pb-1 for | y| < 3 and 3.2 < | y| < 4.7 , respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2TeV and jet rapidity up to | y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at s=13TeV as at smaller centre-of-mass energies.",
author = "{The CMS collaboration} and V. Khachatryan and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and E. Asilar and T. Bergauer and J. Brandstetter and E. Brondolin and M. Dragicevic and J. Er{\"o} and M. Flechl and M. Friedl and R. Fr{\"u}hwirth and Ghete, {V. M.} and C. Hartl and N. H{\"o}rmann and J. Hrubec and M. Jeitler and A. K{\"o}nig and I. Kr{\"a}tschmer and D. Liko and T. Matsushita and I. Mikulec and D. Rabady and N. Rad and B. Rahbaran and H. Rohringer and J. Schieck and J. Strauss and W. Treberer-Treberspurg and W. Waltenberger and Wulz, {C. E.} and V. Mossolov and N. Shumeiko and {Suarez Gonzalez}, J. and S. Alderweireldt and {De Wolf}, {E. A.} and X. Janssen and A. Knutsson and J. Lauwers and {Van De Klundert}, M. and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and {Van Spilbeeck}, A. and {Abu Zeid}, S. and F. Blekman and J. D’Hondt and N. Daci and Othmane Bouhali",
year = "2016",
month = "8",
day = "1",
doi = "10.1140/epjc/s10052-016-4286-3",
language = "English",
volume = "76",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "8",

}

TY - JOUR

T1 - Measurement of the double-differential inclusive jet cross section in proton–proton collisions at √s = 13 TeV

AU - The CMS collaboration

AU - Khachatryan, V.

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Brondolin, E.

AU - Dragicevic, M.

AU - Erö, J.

AU - Flechl, M.

AU - Friedl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Hartl, C.

AU - Hörmann, N.

AU - Hrubec, J.

AU - Jeitler, M.

AU - König, A.

AU - Krätschmer, I.

AU - Liko, D.

AU - Matsushita, T.

AU - Mikulec, I.

AU - Rabady, D.

AU - Rad, N.

AU - Rahbaran, B.

AU - Rohringer, H.

AU - Schieck, J.

AU - Strauss, J.

AU - Treberer-Treberspurg, W.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Mossolov, V.

AU - Shumeiko, N.

AU - Suarez Gonzalez, J.

AU - Alderweireldt, S.

AU - De Wolf, E. A.

AU - Janssen, X.

AU - Knutsson, A.

AU - Lauwers, J.

AU - Van De Klundert, M.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Van Spilbeeck, A.

AU - Abu Zeid, S.

AU - Blekman, F.

AU - D’Hondt, J.

AU - Daci, N.

AU - Bouhali, Othmane

PY - 2016/8/1

Y1 - 2016/8/1

N2 - A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity | y| is presented. The analysis is based on proton–proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13TeV. The data samples correspond to integrated luminosities of 71 and 44pb-1 for | y| < 3 and 3.2 < | y| < 4.7 , respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2TeV and jet rapidity up to | y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at s=13TeV as at smaller centre-of-mass energies.

AB - A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity | y| is presented. The analysis is based on proton–proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13TeV. The data samples correspond to integrated luminosities of 71 and 44pb-1 for | y| < 3 and 3.2 < | y| < 4.7 , respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2TeV and jet rapidity up to | y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at s=13TeV as at smaller centre-of-mass energies.

UR - http://www.scopus.com/inward/record.url?scp=84982104165&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84982104165&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-016-4286-3

DO - 10.1140/epjc/s10052-016-4286-3

M3 - Article

AN - SCOPUS:84982104165

VL - 76

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 8

M1 - 451

ER -