Mapping HIV clustering: A strategy for identifying populations at high risk of HIV infection in sub-Saharan Africa

Diego F. Cuadros, Susanne Awad, Laith Aburaddad

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Background: The geographical structure of an epidemic is ultimately a consequence of the drivers of the epidemic and the population susceptible to the infection. The 'know your epidemic' concept recognizes this geographical feature as a key element for identifying populations at higher risk of HIV infection where prevention interventions should be targeted. In an effort to clarify specific drivers of HIV transmission and identify priority populations for HIV prevention interventions, we conducted a comprehensive mapping of the spatial distribution of HIV infection across sub-Saharan Africa (SSA).Methods: The main source of data for our study was the Demographic and Health Survey conducted in 20 countries from SSA. We identified and compared spatial clusters with high and low numbers of HIV infections in each country using Kulldorff spatial scan test. The test locates areas with higher and lower numbers of HIV infections than expected under spatial randomness. For each identified cluster, a likelihood ratio test was computed. A P-value was determined through Monte Carlo simulations to evaluate the statistical significance of each cluster.Results: Our results suggest stark geographic variations in HIV transmission patterns within and across countries of SSA. About 14% of the population in SSA is located in areas of intense HIV epidemics. Meanwhile, another 16% of the population is located in areas of low HIV prevalence, where some behavioral or biological protective factors appear to have slowed HIV transmission.Conclusions: Our study provides direct evidence for strong geographic clustering of HIV infection across SSA. This striking pattern of heterogeneity at the micro-geographical scale might reflect the fact that most HIV epidemics in the general population in SSA are not far from their epidemic threshold. Our findings identify priority geographic areas for HIV programming, and support the need for spatially targeted interventions in order to maximize the impact on the epidemic in SSA.

Original languageEnglish
Article number28
JournalInternational Journal of Health Geographics
Volume12
DOIs
Publication statusPublished - 22 May 2013
Externally publishedYes

Fingerprint

Africa South of the Sahara
HIV Infections
Cluster Analysis
HIV
Spatial distribution
Population
Clustering
HIV infection
Sub-Saharan Africa
Information Storage and Retrieval
Biological Factors
Demography
Infection

Keywords

  • Disease mapping
  • HIV
  • Mathematical modeling
  • Spatial epidemiology
  • Sub-Saharan Africa

ASJC Scopus subject areas

  • Computer Science(all)
  • Business, Management and Accounting(all)
  • Public Health, Environmental and Occupational Health

Cite this

@article{ed3291cb147f4280924f1d22db910dd5,
title = "Mapping HIV clustering: A strategy for identifying populations at high risk of HIV infection in sub-Saharan Africa",
abstract = "Background: The geographical structure of an epidemic is ultimately a consequence of the drivers of the epidemic and the population susceptible to the infection. The 'know your epidemic' concept recognizes this geographical feature as a key element for identifying populations at higher risk of HIV infection where prevention interventions should be targeted. In an effort to clarify specific drivers of HIV transmission and identify priority populations for HIV prevention interventions, we conducted a comprehensive mapping of the spatial distribution of HIV infection across sub-Saharan Africa (SSA).Methods: The main source of data for our study was the Demographic and Health Survey conducted in 20 countries from SSA. We identified and compared spatial clusters with high and low numbers of HIV infections in each country using Kulldorff spatial scan test. The test locates areas with higher and lower numbers of HIV infections than expected under spatial randomness. For each identified cluster, a likelihood ratio test was computed. A P-value was determined through Monte Carlo simulations to evaluate the statistical significance of each cluster.Results: Our results suggest stark geographic variations in HIV transmission patterns within and across countries of SSA. About 14{\%} of the population in SSA is located in areas of intense HIV epidemics. Meanwhile, another 16{\%} of the population is located in areas of low HIV prevalence, where some behavioral or biological protective factors appear to have slowed HIV transmission.Conclusions: Our study provides direct evidence for strong geographic clustering of HIV infection across SSA. This striking pattern of heterogeneity at the micro-geographical scale might reflect the fact that most HIV epidemics in the general population in SSA are not far from their epidemic threshold. Our findings identify priority geographic areas for HIV programming, and support the need for spatially targeted interventions in order to maximize the impact on the epidemic in SSA.",
keywords = "Disease mapping, HIV, Mathematical modeling, Spatial epidemiology, Sub-Saharan Africa",
author = "Cuadros, {Diego F.} and Susanne Awad and Laith Aburaddad",
year = "2013",
month = "5",
day = "22",
doi = "10.1186/1476-072X-12-28",
language = "English",
volume = "12",
journal = "International Journal of Health Geographics",
issn = "1476-072X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Mapping HIV clustering

T2 - A strategy for identifying populations at high risk of HIV infection in sub-Saharan Africa

AU - Cuadros, Diego F.

AU - Awad, Susanne

AU - Aburaddad, Laith

PY - 2013/5/22

Y1 - 2013/5/22

N2 - Background: The geographical structure of an epidemic is ultimately a consequence of the drivers of the epidemic and the population susceptible to the infection. The 'know your epidemic' concept recognizes this geographical feature as a key element for identifying populations at higher risk of HIV infection where prevention interventions should be targeted. In an effort to clarify specific drivers of HIV transmission and identify priority populations for HIV prevention interventions, we conducted a comprehensive mapping of the spatial distribution of HIV infection across sub-Saharan Africa (SSA).Methods: The main source of data for our study was the Demographic and Health Survey conducted in 20 countries from SSA. We identified and compared spatial clusters with high and low numbers of HIV infections in each country using Kulldorff spatial scan test. The test locates areas with higher and lower numbers of HIV infections than expected under spatial randomness. For each identified cluster, a likelihood ratio test was computed. A P-value was determined through Monte Carlo simulations to evaluate the statistical significance of each cluster.Results: Our results suggest stark geographic variations in HIV transmission patterns within and across countries of SSA. About 14% of the population in SSA is located in areas of intense HIV epidemics. Meanwhile, another 16% of the population is located in areas of low HIV prevalence, where some behavioral or biological protective factors appear to have slowed HIV transmission.Conclusions: Our study provides direct evidence for strong geographic clustering of HIV infection across SSA. This striking pattern of heterogeneity at the micro-geographical scale might reflect the fact that most HIV epidemics in the general population in SSA are not far from their epidemic threshold. Our findings identify priority geographic areas for HIV programming, and support the need for spatially targeted interventions in order to maximize the impact on the epidemic in SSA.

AB - Background: The geographical structure of an epidemic is ultimately a consequence of the drivers of the epidemic and the population susceptible to the infection. The 'know your epidemic' concept recognizes this geographical feature as a key element for identifying populations at higher risk of HIV infection where prevention interventions should be targeted. In an effort to clarify specific drivers of HIV transmission and identify priority populations for HIV prevention interventions, we conducted a comprehensive mapping of the spatial distribution of HIV infection across sub-Saharan Africa (SSA).Methods: The main source of data for our study was the Demographic and Health Survey conducted in 20 countries from SSA. We identified and compared spatial clusters with high and low numbers of HIV infections in each country using Kulldorff spatial scan test. The test locates areas with higher and lower numbers of HIV infections than expected under spatial randomness. For each identified cluster, a likelihood ratio test was computed. A P-value was determined through Monte Carlo simulations to evaluate the statistical significance of each cluster.Results: Our results suggest stark geographic variations in HIV transmission patterns within and across countries of SSA. About 14% of the population in SSA is located in areas of intense HIV epidemics. Meanwhile, another 16% of the population is located in areas of low HIV prevalence, where some behavioral or biological protective factors appear to have slowed HIV transmission.Conclusions: Our study provides direct evidence for strong geographic clustering of HIV infection across SSA. This striking pattern of heterogeneity at the micro-geographical scale might reflect the fact that most HIV epidemics in the general population in SSA are not far from their epidemic threshold. Our findings identify priority geographic areas for HIV programming, and support the need for spatially targeted interventions in order to maximize the impact on the epidemic in SSA.

KW - Disease mapping

KW - HIV

KW - Mathematical modeling

KW - Spatial epidemiology

KW - Sub-Saharan Africa

UR - http://www.scopus.com/inward/record.url?scp=84878009590&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878009590&partnerID=8YFLogxK

U2 - 10.1186/1476-072X-12-28

DO - 10.1186/1476-072X-12-28

M3 - Article

C2 - 23692994

AN - SCOPUS:84878009590

VL - 12

JO - International Journal of Health Geographics

JF - International Journal of Health Geographics

SN - 1476-072X

M1 - 28

ER -