Major gene effect for insulin levels in familial NIDDM pedigrees

Mary C. Schumacher, Sandra J. Hasstedt, Steven Hunt, Roger R. Williams, Steven C. Elbein

Research output: Contribution to journalArticle

71 Citations (Scopus)

Abstract

Insulin resistance and hyperinsulinemia are familial traits that may precede and predict the onset of non-insulin-dependent diabetes mellitus (NIDDM). In some populations, the distribution of fasting insulin levels and measures of in vivo insulin action suggest the effects of a single major gene. We previously noted hyperinsulinemia among unaffected members of 16 large white pedigrees ascertained through two or more NIDDM siblings. To examine the hypothesis that insulin levels are determined by a single major genetic locus, we used segregation analysis to examine fasting insulin levels in 206 family members and 65 spouses who had normal glucose tolerance tests by World Health Organization criteria. Segregation analysis supported a major locus determining fasting insulin levels and segregating as an autosomal recessive allele with a frequency of 0.25. Thus, homozygotes represented 6.25% of the population, and homozygosity for the hyperinsulinemia allele elevated the mean fasting insulin level from 70.3 to 211.1 pM (11.7-35.2 μU/ml). The analysis apportioned the variance in fasting insulin as 33.1% due to the major autosomal locus, 11.4% due to polygenic inheritance, and 55.5% due to unmeasured effects. Homozygotes for the recessive allele had higher 1-h insulin levels than all others (911.7 vs. 427.2 pM [152.0 vs. 71.2 μU/ml]). We also found evidence for a major locus determining 1-h-stimulated insulin levels, with codominant inheritance as the most likely pattern in inheritance. The causal relationship between these findings and NIDDM has not been determined, and segregation of direct measures of insulin action remains to be demonstrated. However, we have found evidence for a major gene locus that may contribute to the observed familial aggregation of impaired insulin action in relatives of NIDDM individuals and the inherited predisposition to NIDDM.

Original languageEnglish
Pages (from-to)416-423
Number of pages8
JournalDiabetes
Volume41
Issue number4
Publication statusPublished - Apr 1992
Externally publishedYes

Fingerprint

Pedigree
Type 2 Diabetes Mellitus
Insulin
Genes
Fasting
Hyperinsulinism
Alleles
Homozygote
Multifactorial Inheritance
Inheritance Patterns
Genetic Loci
Glucose Tolerance Test
Spouses
Insulin Resistance
Siblings
Analysis of Variance
Demography

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Cite this

Schumacher, M. C., Hasstedt, S. J., Hunt, S., Williams, R. R., & Elbein, S. C. (1992). Major gene effect for insulin levels in familial NIDDM pedigrees. Diabetes, 41(4), 416-423.

Major gene effect for insulin levels in familial NIDDM pedigrees. / Schumacher, Mary C.; Hasstedt, Sandra J.; Hunt, Steven; Williams, Roger R.; Elbein, Steven C.

In: Diabetes, Vol. 41, No. 4, 04.1992, p. 416-423.

Research output: Contribution to journalArticle

Schumacher, MC, Hasstedt, SJ, Hunt, S, Williams, RR & Elbein, SC 1992, 'Major gene effect for insulin levels in familial NIDDM pedigrees', Diabetes, vol. 41, no. 4, pp. 416-423.
Schumacher MC, Hasstedt SJ, Hunt S, Williams RR, Elbein SC. Major gene effect for insulin levels in familial NIDDM pedigrees. Diabetes. 1992 Apr;41(4):416-423.
Schumacher, Mary C. ; Hasstedt, Sandra J. ; Hunt, Steven ; Williams, Roger R. ; Elbein, Steven C. / Major gene effect for insulin levels in familial NIDDM pedigrees. In: Diabetes. 1992 ; Vol. 41, No. 4. pp. 416-423.
@article{74b88de1471b463cb3939f8dc0eb953b,
title = "Major gene effect for insulin levels in familial NIDDM pedigrees",
abstract = "Insulin resistance and hyperinsulinemia are familial traits that may precede and predict the onset of non-insulin-dependent diabetes mellitus (NIDDM). In some populations, the distribution of fasting insulin levels and measures of in vivo insulin action suggest the effects of a single major gene. We previously noted hyperinsulinemia among unaffected members of 16 large white pedigrees ascertained through two or more NIDDM siblings. To examine the hypothesis that insulin levels are determined by a single major genetic locus, we used segregation analysis to examine fasting insulin levels in 206 family members and 65 spouses who had normal glucose tolerance tests by World Health Organization criteria. Segregation analysis supported a major locus determining fasting insulin levels and segregating as an autosomal recessive allele with a frequency of 0.25. Thus, homozygotes represented 6.25{\%} of the population, and homozygosity for the hyperinsulinemia allele elevated the mean fasting insulin level from 70.3 to 211.1 pM (11.7-35.2 μU/ml). The analysis apportioned the variance in fasting insulin as 33.1{\%} due to the major autosomal locus, 11.4{\%} due to polygenic inheritance, and 55.5{\%} due to unmeasured effects. Homozygotes for the recessive allele had higher 1-h insulin levels than all others (911.7 vs. 427.2 pM [152.0 vs. 71.2 μU/ml]). We also found evidence for a major locus determining 1-h-stimulated insulin levels, with codominant inheritance as the most likely pattern in inheritance. The causal relationship between these findings and NIDDM has not been determined, and segregation of direct measures of insulin action remains to be demonstrated. However, we have found evidence for a major gene locus that may contribute to the observed familial aggregation of impaired insulin action in relatives of NIDDM individuals and the inherited predisposition to NIDDM.",
author = "Schumacher, {Mary C.} and Hasstedt, {Sandra J.} and Steven Hunt and Williams, {Roger R.} and Elbein, {Steven C.}",
year = "1992",
month = "4",
language = "English",
volume = "41",
pages = "416--423",
journal = "Diabetes",
issn = "0012-1797",
publisher = "American Diabetes Association Inc.",
number = "4",

}

TY - JOUR

T1 - Major gene effect for insulin levels in familial NIDDM pedigrees

AU - Schumacher, Mary C.

AU - Hasstedt, Sandra J.

AU - Hunt, Steven

AU - Williams, Roger R.

AU - Elbein, Steven C.

PY - 1992/4

Y1 - 1992/4

N2 - Insulin resistance and hyperinsulinemia are familial traits that may precede and predict the onset of non-insulin-dependent diabetes mellitus (NIDDM). In some populations, the distribution of fasting insulin levels and measures of in vivo insulin action suggest the effects of a single major gene. We previously noted hyperinsulinemia among unaffected members of 16 large white pedigrees ascertained through two or more NIDDM siblings. To examine the hypothesis that insulin levels are determined by a single major genetic locus, we used segregation analysis to examine fasting insulin levels in 206 family members and 65 spouses who had normal glucose tolerance tests by World Health Organization criteria. Segregation analysis supported a major locus determining fasting insulin levels and segregating as an autosomal recessive allele with a frequency of 0.25. Thus, homozygotes represented 6.25% of the population, and homozygosity for the hyperinsulinemia allele elevated the mean fasting insulin level from 70.3 to 211.1 pM (11.7-35.2 μU/ml). The analysis apportioned the variance in fasting insulin as 33.1% due to the major autosomal locus, 11.4% due to polygenic inheritance, and 55.5% due to unmeasured effects. Homozygotes for the recessive allele had higher 1-h insulin levels than all others (911.7 vs. 427.2 pM [152.0 vs. 71.2 μU/ml]). We also found evidence for a major locus determining 1-h-stimulated insulin levels, with codominant inheritance as the most likely pattern in inheritance. The causal relationship between these findings and NIDDM has not been determined, and segregation of direct measures of insulin action remains to be demonstrated. However, we have found evidence for a major gene locus that may contribute to the observed familial aggregation of impaired insulin action in relatives of NIDDM individuals and the inherited predisposition to NIDDM.

AB - Insulin resistance and hyperinsulinemia are familial traits that may precede and predict the onset of non-insulin-dependent diabetes mellitus (NIDDM). In some populations, the distribution of fasting insulin levels and measures of in vivo insulin action suggest the effects of a single major gene. We previously noted hyperinsulinemia among unaffected members of 16 large white pedigrees ascertained through two or more NIDDM siblings. To examine the hypothesis that insulin levels are determined by a single major genetic locus, we used segregation analysis to examine fasting insulin levels in 206 family members and 65 spouses who had normal glucose tolerance tests by World Health Organization criteria. Segregation analysis supported a major locus determining fasting insulin levels and segregating as an autosomal recessive allele with a frequency of 0.25. Thus, homozygotes represented 6.25% of the population, and homozygosity for the hyperinsulinemia allele elevated the mean fasting insulin level from 70.3 to 211.1 pM (11.7-35.2 μU/ml). The analysis apportioned the variance in fasting insulin as 33.1% due to the major autosomal locus, 11.4% due to polygenic inheritance, and 55.5% due to unmeasured effects. Homozygotes for the recessive allele had higher 1-h insulin levels than all others (911.7 vs. 427.2 pM [152.0 vs. 71.2 μU/ml]). We also found evidence for a major locus determining 1-h-stimulated insulin levels, with codominant inheritance as the most likely pattern in inheritance. The causal relationship between these findings and NIDDM has not been determined, and segregation of direct measures of insulin action remains to be demonstrated. However, we have found evidence for a major gene locus that may contribute to the observed familial aggregation of impaired insulin action in relatives of NIDDM individuals and the inherited predisposition to NIDDM.

UR - http://www.scopus.com/inward/record.url?scp=0026632256&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026632256&partnerID=8YFLogxK

M3 - Article

VL - 41

SP - 416

EP - 423

JO - Diabetes

JF - Diabetes

SN - 0012-1797

IS - 4

ER -