Abstract
An Ising effective field theory (EFT) is presented to calculate the characteristic magnetic properties of a 2D nano-island presenting an out-of-plane magnetization, and subject to an applied in-plane transverse magnetic field. A non-diagonal Ising Hamiltonian with nearest neighbor exchange, single-atom magnetic anisotropy, and a transverse Zeeman term, defines the ground state of the system. We investigate the effects due to the transverse field acting on the magnetic order, in conjunction with those due to the reduced dimensionalities of the core and periphery domains of the nano-island. The choice of a model spin S ≥ 1 for the atoms permits the analysis of spin fluctuations via the single-atom spin correlations. A numerical method is developed to avoid approximations inherent to analytical treatments of the non-diagonal Hamiltonian for spin S ≥ 1 systems. It is applied successfully for nano-island spin S = 1 and 2 systems, generating accurate EFT results. Detailed computations are made for the characteristic magnetic properties of the nano-island over its hexagonal lattice, and applied numerically to calculate the properties of the 2D Co nano-island on an fcc(111) surface. It is shown how the transverse magnetic field perturbs the magnetic order, generating spin correlations and magnetizations for the core and periphery domains that are fundamentally different along the longitudinal and transverse directions. The transverse field drives the system Curie temperature to lower values with increasing strength. The isothermal susceptibilities are shown to be exchange dominated along the out-of-plane direction and quasi-paramagnetic in the inplane. A characteristic thermodynamic function that scales directly with the spin and the transverse field is derived for the correlations of the longitudinal and transverse spin components on the nano-island atomic sites.
Original language | English |
---|---|
Pages (from-to) | 63-77 |
Number of pages | 15 |
Journal | Modern Applied Science |
Volume | 7 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Fingerprint
Keywords
- Ising spin model
- Nano-islands subject to transverse magnetic fields
- Properties of magnetic nano-islands
ASJC Scopus subject areas
- General
Cite this
Magnetic properties of 2D Nano-Islands subject to anisotropy and transverse fields : EFT ising model. / Ghantous, Michel Abou; Khater, Antoine.
In: Modern Applied Science, Vol. 7, No. 9, 2013, p. 63-77.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Magnetic properties of 2D Nano-Islands subject to anisotropy and transverse fields
T2 - EFT ising model
AU - Ghantous, Michel Abou
AU - Khater, Antoine
PY - 2013
Y1 - 2013
N2 - An Ising effective field theory (EFT) is presented to calculate the characteristic magnetic properties of a 2D nano-island presenting an out-of-plane magnetization, and subject to an applied in-plane transverse magnetic field. A non-diagonal Ising Hamiltonian with nearest neighbor exchange, single-atom magnetic anisotropy, and a transverse Zeeman term, defines the ground state of the system. We investigate the effects due to the transverse field acting on the magnetic order, in conjunction with those due to the reduced dimensionalities of the core and periphery domains of the nano-island. The choice of a model spin S ≥ 1 for the atoms permits the analysis of spin fluctuations via the single-atom spin correlations. A numerical method is developed to avoid approximations inherent to analytical treatments of the non-diagonal Hamiltonian for spin S ≥ 1 systems. It is applied successfully for nano-island spin S = 1 and 2 systems, generating accurate EFT results. Detailed computations are made for the characteristic magnetic properties of the nano-island over its hexagonal lattice, and applied numerically to calculate the properties of the 2D Co nano-island on an fcc(111) surface. It is shown how the transverse magnetic field perturbs the magnetic order, generating spin correlations and magnetizations for the core and periphery domains that are fundamentally different along the longitudinal and transverse directions. The transverse field drives the system Curie temperature to lower values with increasing strength. The isothermal susceptibilities are shown to be exchange dominated along the out-of-plane direction and quasi-paramagnetic in the inplane. A characteristic thermodynamic function that scales directly with the spin and the transverse field is derived for the correlations of the longitudinal and transverse spin components on the nano-island atomic sites.
AB - An Ising effective field theory (EFT) is presented to calculate the characteristic magnetic properties of a 2D nano-island presenting an out-of-plane magnetization, and subject to an applied in-plane transverse magnetic field. A non-diagonal Ising Hamiltonian with nearest neighbor exchange, single-atom magnetic anisotropy, and a transverse Zeeman term, defines the ground state of the system. We investigate the effects due to the transverse field acting on the magnetic order, in conjunction with those due to the reduced dimensionalities of the core and periphery domains of the nano-island. The choice of a model spin S ≥ 1 for the atoms permits the analysis of spin fluctuations via the single-atom spin correlations. A numerical method is developed to avoid approximations inherent to analytical treatments of the non-diagonal Hamiltonian for spin S ≥ 1 systems. It is applied successfully for nano-island spin S = 1 and 2 systems, generating accurate EFT results. Detailed computations are made for the characteristic magnetic properties of the nano-island over its hexagonal lattice, and applied numerically to calculate the properties of the 2D Co nano-island on an fcc(111) surface. It is shown how the transverse magnetic field perturbs the magnetic order, generating spin correlations and magnetizations for the core and periphery domains that are fundamentally different along the longitudinal and transverse directions. The transverse field drives the system Curie temperature to lower values with increasing strength. The isothermal susceptibilities are shown to be exchange dominated along the out-of-plane direction and quasi-paramagnetic in the inplane. A characteristic thermodynamic function that scales directly with the spin and the transverse field is derived for the correlations of the longitudinal and transverse spin components on the nano-island atomic sites.
KW - Ising spin model
KW - Nano-islands subject to transverse magnetic fields
KW - Properties of magnetic nano-islands
UR - http://www.scopus.com/inward/record.url?scp=84884677338&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884677338&partnerID=8YFLogxK
U2 - 10.5539/mas.v7n9p63
DO - 10.5539/mas.v7n9p63
M3 - Article
AN - SCOPUS:84884677338
VL - 7
SP - 63
EP - 77
JO - Modern Applied Science
JF - Modern Applied Science
SN - 1913-1844
IS - 9
ER -