Machine-assisted map editing

Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay Chawla, Sam Madden

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Mapping road networks today is labor-intensive. As a result, road maps have poor coverage outside urban centers in many countries. Systems to automatically infer road network graphs from aerial imagery and GPS trajectories have been proposed to improve coverage of road maps. However, because of high error rates, these systems have not been adopted by mapping communities. We propose machine-assisted map editing, where automatic map inference is integrated into existing, human-centric map editing workflows. To realize this, we build Machine-Assisted iD (MAiD), where we extend the web-based OpenStreetMap editor, iD, with machine-assistance functionality. We complement MAiD with a novel approach for inferring road topology from aerial imagery that combines the speed of prior segmentation approaches with the accuracy of prior iterative graph construction methods. We design MAiD to tackle the addition of major, arterial roads in regions where existing maps have poor coverage, and the incremental improvement of coverage in regions where major roads are already mapped. We conduct two user studies and find that, when participants are given a fixed time to map roads, they are able to add as much as 3.5x more roads with MAiD.

Original languageEnglish
Title of host publication26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018
EditorsLi Xiong, Roberto Tamassia, Kashani Farnoush Banaei, Ralf Hartmut Guting, Erik Hoel
PublisherAssociation for Computing Machinery
Pages23-32
Number of pages10
ISBN (Electronic)9781450358897
DOIs
Publication statusPublished - 6 Nov 2018
Event26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018 - Seattle, United States
Duration: 6 Nov 20189 Nov 2018

Other

Other26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018
CountryUnited States
CitySeattle
Period6/11/189/11/18

Fingerprint

road
Coverage
imagery
Antennas
Road Network
Machine design
construction method
segmentation
topology
Global positioning system
GPS
labor
trajectory
Trajectories
Topology
Personnel
User Studies
Graph in graph theory
Web-based
Work Flow

Keywords

  • Automatic Map Inference
  • Map Editing

ASJC Scopus subject areas

  • Earth-Surface Processes
  • Computer Science Applications
  • Modelling and Simulation
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Cite this

Bastani, F., He, S., Abbar, S., Alizadeh, M., Balakrishnan, H., Chawla, S., & Madden, S. (2018). Machine-assisted map editing. In L. Xiong, R. Tamassia, K. F. Banaei, R. H. Guting, & E. Hoel (Eds.), 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018 (pp. 23-32). Association for Computing Machinery. https://doi.org/10.1145/3274895.3274927

Machine-assisted map editing. / Bastani, Favyen; He, Songtao; Abbar, Sofiane; Alizadeh, Mohammad; Balakrishnan, Hari; Chawla, Sanjay; Madden, Sam.

26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018. ed. / Li Xiong; Roberto Tamassia; Kashani Farnoush Banaei; Ralf Hartmut Guting; Erik Hoel. Association for Computing Machinery, 2018. p. 23-32.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Bastani, F, He, S, Abbar, S, Alizadeh, M, Balakrishnan, H, Chawla, S & Madden, S 2018, Machine-assisted map editing. in L Xiong, R Tamassia, KF Banaei, RH Guting & E Hoel (eds), 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018. Association for Computing Machinery, pp. 23-32, 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018, Seattle, United States, 6/11/18. https://doi.org/10.1145/3274895.3274927
Bastani F, He S, Abbar S, Alizadeh M, Balakrishnan H, Chawla S et al. Machine-assisted map editing. In Xiong L, Tamassia R, Banaei KF, Guting RH, Hoel E, editors, 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018. Association for Computing Machinery. 2018. p. 23-32 https://doi.org/10.1145/3274895.3274927
Bastani, Favyen ; He, Songtao ; Abbar, Sofiane ; Alizadeh, Mohammad ; Balakrishnan, Hari ; Chawla, Sanjay ; Madden, Sam. / Machine-assisted map editing. 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018. editor / Li Xiong ; Roberto Tamassia ; Kashani Farnoush Banaei ; Ralf Hartmut Guting ; Erik Hoel. Association for Computing Machinery, 2018. pp. 23-32
@inproceedings{bf1dd74f288c4806bcb9bebbc1ec2e84,
title = "Machine-assisted map editing",
abstract = "Mapping road networks today is labor-intensive. As a result, road maps have poor coverage outside urban centers in many countries. Systems to automatically infer road network graphs from aerial imagery and GPS trajectories have been proposed to improve coverage of road maps. However, because of high error rates, these systems have not been adopted by mapping communities. We propose machine-assisted map editing, where automatic map inference is integrated into existing, human-centric map editing workflows. To realize this, we build Machine-Assisted iD (MAiD), where we extend the web-based OpenStreetMap editor, iD, with machine-assistance functionality. We complement MAiD with a novel approach for inferring road topology from aerial imagery that combines the speed of prior segmentation approaches with the accuracy of prior iterative graph construction methods. We design MAiD to tackle the addition of major, arterial roads in regions where existing maps have poor coverage, and the incremental improvement of coverage in regions where major roads are already mapped. We conduct two user studies and find that, when participants are given a fixed time to map roads, they are able to add as much as 3.5x more roads with MAiD.",
keywords = "Automatic Map Inference, Map Editing",
author = "Favyen Bastani and Songtao He and Sofiane Abbar and Mohammad Alizadeh and Hari Balakrishnan and Sanjay Chawla and Sam Madden",
year = "2018",
month = "11",
day = "6",
doi = "10.1145/3274895.3274927",
language = "English",
pages = "23--32",
editor = "Li Xiong and Roberto Tamassia and Banaei, {Kashani Farnoush} and Guting, {Ralf Hartmut} and Erik Hoel",
booktitle = "26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018",
publisher = "Association for Computing Machinery",

}

TY - GEN

T1 - Machine-assisted map editing

AU - Bastani, Favyen

AU - He, Songtao

AU - Abbar, Sofiane

AU - Alizadeh, Mohammad

AU - Balakrishnan, Hari

AU - Chawla, Sanjay

AU - Madden, Sam

PY - 2018/11/6

Y1 - 2018/11/6

N2 - Mapping road networks today is labor-intensive. As a result, road maps have poor coverage outside urban centers in many countries. Systems to automatically infer road network graphs from aerial imagery and GPS trajectories have been proposed to improve coverage of road maps. However, because of high error rates, these systems have not been adopted by mapping communities. We propose machine-assisted map editing, where automatic map inference is integrated into existing, human-centric map editing workflows. To realize this, we build Machine-Assisted iD (MAiD), where we extend the web-based OpenStreetMap editor, iD, with machine-assistance functionality. We complement MAiD with a novel approach for inferring road topology from aerial imagery that combines the speed of prior segmentation approaches with the accuracy of prior iterative graph construction methods. We design MAiD to tackle the addition of major, arterial roads in regions where existing maps have poor coverage, and the incremental improvement of coverage in regions where major roads are already mapped. We conduct two user studies and find that, when participants are given a fixed time to map roads, they are able to add as much as 3.5x more roads with MAiD.

AB - Mapping road networks today is labor-intensive. As a result, road maps have poor coverage outside urban centers in many countries. Systems to automatically infer road network graphs from aerial imagery and GPS trajectories have been proposed to improve coverage of road maps. However, because of high error rates, these systems have not been adopted by mapping communities. We propose machine-assisted map editing, where automatic map inference is integrated into existing, human-centric map editing workflows. To realize this, we build Machine-Assisted iD (MAiD), where we extend the web-based OpenStreetMap editor, iD, with machine-assistance functionality. We complement MAiD with a novel approach for inferring road topology from aerial imagery that combines the speed of prior segmentation approaches with the accuracy of prior iterative graph construction methods. We design MAiD to tackle the addition of major, arterial roads in regions where existing maps have poor coverage, and the incremental improvement of coverage in regions where major roads are already mapped. We conduct two user studies and find that, when participants are given a fixed time to map roads, they are able to add as much as 3.5x more roads with MAiD.

KW - Automatic Map Inference

KW - Map Editing

UR - http://www.scopus.com/inward/record.url?scp=85058614361&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058614361&partnerID=8YFLogxK

U2 - 10.1145/3274895.3274927

DO - 10.1145/3274895.3274927

M3 - Conference contribution

SP - 23

EP - 32

BT - 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2018

A2 - Xiong, Li

A2 - Tamassia, Roberto

A2 - Banaei, Kashani Farnoush

A2 - Guting, Ralf Hartmut

A2 - Hoel, Erik

PB - Association for Computing Machinery

ER -