Investigation of local environments in NafionSiO 2 composite membranes used in vanadium redox flow batteries

M. Vijayakumar, Birgit Schwenzer, Soowhan Kim, Zhenguo Yang, S. Thevuthasan, Jun Liu, Gordon L. Graff, Jianzhi Hu

    Research output: Contribution to journalArticle

    47 Citations (Scopus)


    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO 2 incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of NafionSiO 2 composite membrane in the redox flow cell. This paper presents results of the analysis of the NafionSiO 2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultravioletvisible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the 19F and 29Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The 29Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the NafionSiO 2 composite membrane materials in vanadium redox flow batteries.

    Original languageEnglish
    Pages (from-to)71-80
    Number of pages10
    JournalSolid State Nuclear Magnetic Resonance
    Publication statusPublished - 1 Apr 2012



    • H and Si NMR and FTIR spectroscopy
    • NafionSiO membrane
    • Vanadium redox flow battery

    ASJC Scopus subject areas

    • Radiation
    • Chemistry(all)
    • Nuclear and High Energy Physics
    • Instrumentation

    Cite this