Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer

Radhakrishnan Vishnubalaji, Varun Nair, Khalid Ouararhni, Eyad Elkord, Nehad M. Alajez

Research output: Contribution to journalArticle

Abstract

Breast cancer (BC) is the leading cause of cancer-related death in women. Therefore, a better understanding of BC biology and signaling pathways might lead to the development of novel biomarkers and targeted therapies. Although a number of transcriptomic studies have been performed on breast cancer patients from various geographic regions, there are almost no such comprehensive studies performed on breast cancer from patients in the gulf region. This study aimed to provide a better understanding of the altered molecular networks in BC from the gulf region. Herein, we compared the transcriptome of BC to adjacent normal tissue from six BC patients and identified 1,108 upregulated and 518 downregulated transcripts. A selected number of genes from the RNA-Seq analysis were subsequently validated using qRT-PCR. Differentially expressed (2.0-fold change, adj. p < 0.05) transcripts were subjected to ingenuity pathway analysis, which revealed a myriad of affected signaling pathways and functional categories. Activation of ERBB2, FOXM1, ESR1, and IGFBP2 mechanistic networks was most prominent in BC tissue. Additionally, BC tissue exhibited marked enrichment in genes promoting cellular proliferation, migration, survival, and DNA replication and repair. The presence of genes indicative of immune cell infiltration and activation was also observed in BC tissue. We observed high concordance [43.5% (upregulated) and 62.1% (downregulated)] between differentially expressed genes in our study group and those reported for the TCGA BC cohort. Our data provide novel insight on BC biology and suggest common altered molecular networks in BC in this geographic region. Our data suggest future development of therapeutic interventions targeting those common signaling pathways.

Original languageEnglish
Article number910
JournalFrontiers in Oncology
Volume9
DOIs
Publication statusPublished - 18 Sep 2019

Fingerprint

Gene Expression Profiling
Breast Neoplasms
Genes
Down-Regulation
DNA Replication
Transcriptome
DNA Repair
Biomarkers
Cell Proliferation
RNA

Keywords

  • breast cancer
  • IPA
  • pathway analysis
  • RNA-Seq
  • transcriptome

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer. / Vishnubalaji, Radhakrishnan; Nair, Varun; Ouararhni, Khalid; Elkord, Eyad; Alajez, Nehad M.

In: Frontiers in Oncology, Vol. 9, 910, 18.09.2019.

Research output: Contribution to journalArticle

@article{e6f3a99c84c147e6b279afb62fefece7,
title = "Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer",
abstract = "Breast cancer (BC) is the leading cause of cancer-related death in women. Therefore, a better understanding of BC biology and signaling pathways might lead to the development of novel biomarkers and targeted therapies. Although a number of transcriptomic studies have been performed on breast cancer patients from various geographic regions, there are almost no such comprehensive studies performed on breast cancer from patients in the gulf region. This study aimed to provide a better understanding of the altered molecular networks in BC from the gulf region. Herein, we compared the transcriptome of BC to adjacent normal tissue from six BC patients and identified 1,108 upregulated and 518 downregulated transcripts. A selected number of genes from the RNA-Seq analysis were subsequently validated using qRT-PCR. Differentially expressed (2.0-fold change, adj. p < 0.05) transcripts were subjected to ingenuity pathway analysis, which revealed a myriad of affected signaling pathways and functional categories. Activation of ERBB2, FOXM1, ESR1, and IGFBP2 mechanistic networks was most prominent in BC tissue. Additionally, BC tissue exhibited marked enrichment in genes promoting cellular proliferation, migration, survival, and DNA replication and repair. The presence of genes indicative of immune cell infiltration and activation was also observed in BC tissue. We observed high concordance [43.5{\%} (upregulated) and 62.1{\%} (downregulated)] between differentially expressed genes in our study group and those reported for the TCGA BC cohort. Our data provide novel insight on BC biology and suggest common altered molecular networks in BC in this geographic region. Our data suggest future development of therapeutic interventions targeting those common signaling pathways.",
keywords = "breast cancer, IPA, pathway analysis, RNA-Seq, transcriptome",
author = "Radhakrishnan Vishnubalaji and Varun Nair and Khalid Ouararhni and Eyad Elkord and Alajez, {Nehad M.}",
year = "2019",
month = "9",
day = "18",
doi = "10.3389/fonc.2019.00910",
language = "English",
volume = "9",
journal = "Frontiers in Oncology",
issn = "2234-943X",
publisher = "Frontiers Media S. A.",

}

TY - JOUR

T1 - Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer

AU - Vishnubalaji, Radhakrishnan

AU - Nair, Varun

AU - Ouararhni, Khalid

AU - Elkord, Eyad

AU - Alajez, Nehad M.

PY - 2019/9/18

Y1 - 2019/9/18

N2 - Breast cancer (BC) is the leading cause of cancer-related death in women. Therefore, a better understanding of BC biology and signaling pathways might lead to the development of novel biomarkers and targeted therapies. Although a number of transcriptomic studies have been performed on breast cancer patients from various geographic regions, there are almost no such comprehensive studies performed on breast cancer from patients in the gulf region. This study aimed to provide a better understanding of the altered molecular networks in BC from the gulf region. Herein, we compared the transcriptome of BC to adjacent normal tissue from six BC patients and identified 1,108 upregulated and 518 downregulated transcripts. A selected number of genes from the RNA-Seq analysis were subsequently validated using qRT-PCR. Differentially expressed (2.0-fold change, adj. p < 0.05) transcripts were subjected to ingenuity pathway analysis, which revealed a myriad of affected signaling pathways and functional categories. Activation of ERBB2, FOXM1, ESR1, and IGFBP2 mechanistic networks was most prominent in BC tissue. Additionally, BC tissue exhibited marked enrichment in genes promoting cellular proliferation, migration, survival, and DNA replication and repair. The presence of genes indicative of immune cell infiltration and activation was also observed in BC tissue. We observed high concordance [43.5% (upregulated) and 62.1% (downregulated)] between differentially expressed genes in our study group and those reported for the TCGA BC cohort. Our data provide novel insight on BC biology and suggest common altered molecular networks in BC in this geographic region. Our data suggest future development of therapeutic interventions targeting those common signaling pathways.

AB - Breast cancer (BC) is the leading cause of cancer-related death in women. Therefore, a better understanding of BC biology and signaling pathways might lead to the development of novel biomarkers and targeted therapies. Although a number of transcriptomic studies have been performed on breast cancer patients from various geographic regions, there are almost no such comprehensive studies performed on breast cancer from patients in the gulf region. This study aimed to provide a better understanding of the altered molecular networks in BC from the gulf region. Herein, we compared the transcriptome of BC to adjacent normal tissue from six BC patients and identified 1,108 upregulated and 518 downregulated transcripts. A selected number of genes from the RNA-Seq analysis were subsequently validated using qRT-PCR. Differentially expressed (2.0-fold change, adj. p < 0.05) transcripts were subjected to ingenuity pathway analysis, which revealed a myriad of affected signaling pathways and functional categories. Activation of ERBB2, FOXM1, ESR1, and IGFBP2 mechanistic networks was most prominent in BC tissue. Additionally, BC tissue exhibited marked enrichment in genes promoting cellular proliferation, migration, survival, and DNA replication and repair. The presence of genes indicative of immune cell infiltration and activation was also observed in BC tissue. We observed high concordance [43.5% (upregulated) and 62.1% (downregulated)] between differentially expressed genes in our study group and those reported for the TCGA BC cohort. Our data provide novel insight on BC biology and suggest common altered molecular networks in BC in this geographic region. Our data suggest future development of therapeutic interventions targeting those common signaling pathways.

KW - breast cancer

KW - IPA

KW - pathway analysis

KW - RNA-Seq

KW - transcriptome

UR - http://www.scopus.com/inward/record.url?scp=85072882984&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072882984&partnerID=8YFLogxK

U2 - 10.3389/fonc.2019.00910

DO - 10.3389/fonc.2019.00910

M3 - Article

AN - SCOPUS:85072882984

VL - 9

JO - Frontiers in Oncology

JF - Frontiers in Oncology

SN - 2234-943X

M1 - 910

ER -