Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of legionella pneumophila within macrophages and amoebae

Christopher T D Price, Souhaila M. Al Khodor, Tasneem Al-Quadan, Yousef Abu Kwaik

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

The Dot/Icm-translocated ankyrin B (AnkB) effector of Legionella pneumophila exhibits molecular mimicry of eukaryotic F-box proteins and is essential for intracellular replication in macrophages and protozoa. In addition to two eukaryotic-like ankyrin (ANK) domains, AnkB harbors a conserved eukaryotic F-box domain, which is involved in polyubiquitination of proteins throughout the eukaryotic kingdom. We have recently shown that the F-box domain of the AnkB effector is essential for decoration of the Legionella-containing vacuole (LCV) with polyubiquitinated proteins within macrophages and protozoan hosts. To decipher the role of the two ANK domains in the function of AnkB, we have constructed in-frame deletion of either or both of the ANK domain-encoding regions (ankBΔA1, ankBΔA2, and ankBΔA1A2) to trans-complement the ankB null mutant. Deletion of the ANK domains results in defects in intracellular proliferation and decoration of the LCV with polyubiquitinated proteins. Export of the truncated variants of AnkB was reduced, and this may account for the observed defects. However, while full-length AnkB ectopically expressed in mammalian cells trans-rescues the ankB null mutant for intracellular proliferation, ectopic expression of AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 fails to trans-rescue the ankB null mutant. Importantly, ectopically expressed full-length AnkB is targeted to the host cell plasma membrane, where it recruits polyubiquitinated proteins. In contrast, AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 are diffusely distributed throughout the cytosol and fail to recruit polyubiquitinated proteins. We conclude that the two eukaryotic-like ANK domains of AnkB are essential for intracellular proliferation, for targeting AnkB to the host membranes, and for decoration of the LCV with polyubiquitinated proteins.

Original languageEnglish
Pages (from-to)2079-2088
Number of pages10
JournalInfection and Immunity
Volume78
Issue number5
DOIs
Publication statusPublished - May 2010
Externally publishedYes

Fingerprint

Ankyrins
Legionella pneumophila
Amoeba
Macrophages
Legionella
Vacuoles
Proteins
Cell Membrane
F-Box Proteins
Molecular Mimicry

ASJC Scopus subject areas

  • Immunology
  • Microbiology
  • Parasitology
  • Infectious Diseases

Cite this

Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of legionella pneumophila within macrophages and amoebae. / Price, Christopher T D; Al Khodor, Souhaila M.; Al-Quadan, Tasneem; Kwaik, Yousef Abu.

In: Infection and Immunity, Vol. 78, No. 5, 05.2010, p. 2079-2088.

Research output: Contribution to journalArticle

@article{6799ca83a38c460cad76ecf64023d590,
title = "Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of legionella pneumophila within macrophages and amoebae",
abstract = "The Dot/Icm-translocated ankyrin B (AnkB) effector of Legionella pneumophila exhibits molecular mimicry of eukaryotic F-box proteins and is essential for intracellular replication in macrophages and protozoa. In addition to two eukaryotic-like ankyrin (ANK) domains, AnkB harbors a conserved eukaryotic F-box domain, which is involved in polyubiquitination of proteins throughout the eukaryotic kingdom. We have recently shown that the F-box domain of the AnkB effector is essential for decoration of the Legionella-containing vacuole (LCV) with polyubiquitinated proteins within macrophages and protozoan hosts. To decipher the role of the two ANK domains in the function of AnkB, we have constructed in-frame deletion of either or both of the ANK domain-encoding regions (ankBΔA1, ankBΔA2, and ankBΔA1A2) to trans-complement the ankB null mutant. Deletion of the ANK domains results in defects in intracellular proliferation and decoration of the LCV with polyubiquitinated proteins. Export of the truncated variants of AnkB was reduced, and this may account for the observed defects. However, while full-length AnkB ectopically expressed in mammalian cells trans-rescues the ankB null mutant for intracellular proliferation, ectopic expression of AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 fails to trans-rescue the ankB null mutant. Importantly, ectopically expressed full-length AnkB is targeted to the host cell plasma membrane, where it recruits polyubiquitinated proteins. In contrast, AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 are diffusely distributed throughout the cytosol and fail to recruit polyubiquitinated proteins. We conclude that the two eukaryotic-like ANK domains of AnkB are essential for intracellular proliferation, for targeting AnkB to the host membranes, and for decoration of the LCV with polyubiquitinated proteins.",
author = "Price, {Christopher T D} and {Al Khodor}, {Souhaila M.} and Tasneem Al-Quadan and Kwaik, {Yousef Abu}",
year = "2010",
month = "5",
doi = "10.1128/IAI.01450-09",
language = "English",
volume = "78",
pages = "2079--2088",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "5",

}

TY - JOUR

T1 - Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of legionella pneumophila within macrophages and amoebae

AU - Price, Christopher T D

AU - Al Khodor, Souhaila M.

AU - Al-Quadan, Tasneem

AU - Kwaik, Yousef Abu

PY - 2010/5

Y1 - 2010/5

N2 - The Dot/Icm-translocated ankyrin B (AnkB) effector of Legionella pneumophila exhibits molecular mimicry of eukaryotic F-box proteins and is essential for intracellular replication in macrophages and protozoa. In addition to two eukaryotic-like ankyrin (ANK) domains, AnkB harbors a conserved eukaryotic F-box domain, which is involved in polyubiquitination of proteins throughout the eukaryotic kingdom. We have recently shown that the F-box domain of the AnkB effector is essential for decoration of the Legionella-containing vacuole (LCV) with polyubiquitinated proteins within macrophages and protozoan hosts. To decipher the role of the two ANK domains in the function of AnkB, we have constructed in-frame deletion of either or both of the ANK domain-encoding regions (ankBΔA1, ankBΔA2, and ankBΔA1A2) to trans-complement the ankB null mutant. Deletion of the ANK domains results in defects in intracellular proliferation and decoration of the LCV with polyubiquitinated proteins. Export of the truncated variants of AnkB was reduced, and this may account for the observed defects. However, while full-length AnkB ectopically expressed in mammalian cells trans-rescues the ankB null mutant for intracellular proliferation, ectopic expression of AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 fails to trans-rescue the ankB null mutant. Importantly, ectopically expressed full-length AnkB is targeted to the host cell plasma membrane, where it recruits polyubiquitinated proteins. In contrast, AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 are diffusely distributed throughout the cytosol and fail to recruit polyubiquitinated proteins. We conclude that the two eukaryotic-like ANK domains of AnkB are essential for intracellular proliferation, for targeting AnkB to the host membranes, and for decoration of the LCV with polyubiquitinated proteins.

AB - The Dot/Icm-translocated ankyrin B (AnkB) effector of Legionella pneumophila exhibits molecular mimicry of eukaryotic F-box proteins and is essential for intracellular replication in macrophages and protozoa. In addition to two eukaryotic-like ankyrin (ANK) domains, AnkB harbors a conserved eukaryotic F-box domain, which is involved in polyubiquitination of proteins throughout the eukaryotic kingdom. We have recently shown that the F-box domain of the AnkB effector is essential for decoration of the Legionella-containing vacuole (LCV) with polyubiquitinated proteins within macrophages and protozoan hosts. To decipher the role of the two ANK domains in the function of AnkB, we have constructed in-frame deletion of either or both of the ANK domain-encoding regions (ankBΔA1, ankBΔA2, and ankBΔA1A2) to trans-complement the ankB null mutant. Deletion of the ANK domains results in defects in intracellular proliferation and decoration of the LCV with polyubiquitinated proteins. Export of the truncated variants of AnkB was reduced, and this may account for the observed defects. However, while full-length AnkB ectopically expressed in mammalian cells trans-rescues the ankB null mutant for intracellular proliferation, ectopic expression of AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 fails to trans-rescue the ankB null mutant. Importantly, ectopically expressed full-length AnkB is targeted to the host cell plasma membrane, where it recruits polyubiquitinated proteins. In contrast, AnkBΔA1, AnkBΔA2, and AnkBΔA1A2 are diffusely distributed throughout the cytosol and fail to recruit polyubiquitinated proteins. We conclude that the two eukaryotic-like ANK domains of AnkB are essential for intracellular proliferation, for targeting AnkB to the host membranes, and for decoration of the LCV with polyubiquitinated proteins.

UR - http://www.scopus.com/inward/record.url?scp=77951220224&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951220224&partnerID=8YFLogxK

U2 - 10.1128/IAI.01450-09

DO - 10.1128/IAI.01450-09

M3 - Article

C2 - 20194593

AN - SCOPUS:77951220224

VL - 78

SP - 2079

EP - 2088

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 5

ER -