In Vivo Adenovirus-Mediated Gene Transfer of the Escherichia coli Cytosine Deaminase Gene to Human Colon Carcinoma-Derived Tumors Induces Chemosensitivity to 5-Fluorocytosine

Edward A. Hirschowitz, Akihiko Ohwada, William R. Pascal, Thomas J. Russi, Ronald G. Crystal

Research output: Contribution to journalArticle

183 Citations (Scopus)

Abstract

To evaluate the concept that in vivo transfer of the Escherichia coli cytosine deaminase gene will confer sensitivity of a solid tumor to the prodrug 5-fluorocytosine (5FC), we constructed an adenovirus vector (AdCMV.CD) carrying the cytosine deaminase gene driven by the cytomegalovirus (CMV) promoter, infected HT29 colon carcinoma cells in vitro and in vivo, and evaluated cell growth over time. AdCMV.CD produced a functional cytosine deaminase protein in HT29 cells in vitro as evidenced by the ability of lysates from the infected cells to convert [3H]5FC to its active metabolite 5-fluorouracil (5FU). The AdCMV.CD vector effectively suppressed HT29 cell growth in vitro in the presence of 5FC in a dose-dependent manner. Infection with AdCMV.CD, when as few as 10% of cells expressed the cytosine deaminase gene, was associated with a bystander effect when combined with 5FC in cell mixing studies. Further, this bystander effect was not dependent on cell-to-cell contact as demonstrated by suppression of [3H]thymidine incorporation in HT29 cells when supernatant from AdCMV.CD-infected cells treated with 5FC was transferred to uninfected cells. Consistent with these in vitro observations, when AdCMV.CD was directly injected into established subcutaneous HT29 tumors in nude mice receiving 5FC, there was a four-fold reduction in tumor size at day 15 compared to controls, and a five-fold reduction at day 28. These observations suggest that adenovirus-mediated gene transfer of the E. coli cytosine deaminase gene and concomitant administration of 5FC may have potential as a strategy for local control of the growth of tumor cells susceptible to 5FU.

Original languageEnglish
Pages (from-to)1055-1063
Number of pages9
JournalHuman Gene Therapy
Volume6
Issue number8
DOIs
Publication statusPublished - 1 Aug 1995
Externally publishedYes

Fingerprint

Cytosine Deaminase
Flucytosine
Adenoviridae
Colon
Escherichia coli
Carcinoma
Genes
Neoplasms
HT29 Cells
Bystander Effect
Fluorouracil
Growth
Prodrugs
Cytomegalovirus
Nude Mice
Thymidine

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics

Cite this

In Vivo Adenovirus-Mediated Gene Transfer of the Escherichia coli Cytosine Deaminase Gene to Human Colon Carcinoma-Derived Tumors Induces Chemosensitivity to 5-Fluorocytosine. / Hirschowitz, Edward A.; Ohwada, Akihiko; Pascal, William R.; Russi, Thomas J.; Crystal, Ronald G.

In: Human Gene Therapy, Vol. 6, No. 8, 01.08.1995, p. 1055-1063.

Research output: Contribution to journalArticle

@article{5053b9969343409b8bb912d425221473,
title = "In Vivo Adenovirus-Mediated Gene Transfer of the Escherichia coli Cytosine Deaminase Gene to Human Colon Carcinoma-Derived Tumors Induces Chemosensitivity to 5-Fluorocytosine",
abstract = "To evaluate the concept that in vivo transfer of the Escherichia coli cytosine deaminase gene will confer sensitivity of a solid tumor to the prodrug 5-fluorocytosine (5FC), we constructed an adenovirus vector (AdCMV.CD) carrying the cytosine deaminase gene driven by the cytomegalovirus (CMV) promoter, infected HT29 colon carcinoma cells in vitro and in vivo, and evaluated cell growth over time. AdCMV.CD produced a functional cytosine deaminase protein in HT29 cells in vitro as evidenced by the ability of lysates from the infected cells to convert [3H]5FC to its active metabolite 5-fluorouracil (5FU). The AdCMV.CD vector effectively suppressed HT29 cell growth in vitro in the presence of 5FC in a dose-dependent manner. Infection with AdCMV.CD, when as few as 10{\%} of cells expressed the cytosine deaminase gene, was associated with a bystander effect when combined with 5FC in cell mixing studies. Further, this bystander effect was not dependent on cell-to-cell contact as demonstrated by suppression of [3H]thymidine incorporation in HT29 cells when supernatant from AdCMV.CD-infected cells treated with 5FC was transferred to uninfected cells. Consistent with these in vitro observations, when AdCMV.CD was directly injected into established subcutaneous HT29 tumors in nude mice receiving 5FC, there was a four-fold reduction in tumor size at day 15 compared to controls, and a five-fold reduction at day 28. These observations suggest that adenovirus-mediated gene transfer of the E. coli cytosine deaminase gene and concomitant administration of 5FC may have potential as a strategy for local control of the growth of tumor cells susceptible to 5FU.",
author = "Hirschowitz, {Edward A.} and Akihiko Ohwada and Pascal, {William R.} and Russi, {Thomas J.} and Crystal, {Ronald G.}",
year = "1995",
month = "8",
day = "1",
doi = "10.1089/hum.1995.6.8-1055",
language = "English",
volume = "6",
pages = "1055--1063",
journal = "Human Gene Therapy",
issn = "1043-0342",
publisher = "Mary Ann Liebert Inc.",
number = "8",

}

TY - JOUR

T1 - In Vivo Adenovirus-Mediated Gene Transfer of the Escherichia coli Cytosine Deaminase Gene to Human Colon Carcinoma-Derived Tumors Induces Chemosensitivity to 5-Fluorocytosine

AU - Hirschowitz, Edward A.

AU - Ohwada, Akihiko

AU - Pascal, William R.

AU - Russi, Thomas J.

AU - Crystal, Ronald G.

PY - 1995/8/1

Y1 - 1995/8/1

N2 - To evaluate the concept that in vivo transfer of the Escherichia coli cytosine deaminase gene will confer sensitivity of a solid tumor to the prodrug 5-fluorocytosine (5FC), we constructed an adenovirus vector (AdCMV.CD) carrying the cytosine deaminase gene driven by the cytomegalovirus (CMV) promoter, infected HT29 colon carcinoma cells in vitro and in vivo, and evaluated cell growth over time. AdCMV.CD produced a functional cytosine deaminase protein in HT29 cells in vitro as evidenced by the ability of lysates from the infected cells to convert [3H]5FC to its active metabolite 5-fluorouracil (5FU). The AdCMV.CD vector effectively suppressed HT29 cell growth in vitro in the presence of 5FC in a dose-dependent manner. Infection with AdCMV.CD, when as few as 10% of cells expressed the cytosine deaminase gene, was associated with a bystander effect when combined with 5FC in cell mixing studies. Further, this bystander effect was not dependent on cell-to-cell contact as demonstrated by suppression of [3H]thymidine incorporation in HT29 cells when supernatant from AdCMV.CD-infected cells treated with 5FC was transferred to uninfected cells. Consistent with these in vitro observations, when AdCMV.CD was directly injected into established subcutaneous HT29 tumors in nude mice receiving 5FC, there was a four-fold reduction in tumor size at day 15 compared to controls, and a five-fold reduction at day 28. These observations suggest that adenovirus-mediated gene transfer of the E. coli cytosine deaminase gene and concomitant administration of 5FC may have potential as a strategy for local control of the growth of tumor cells susceptible to 5FU.

AB - To evaluate the concept that in vivo transfer of the Escherichia coli cytosine deaminase gene will confer sensitivity of a solid tumor to the prodrug 5-fluorocytosine (5FC), we constructed an adenovirus vector (AdCMV.CD) carrying the cytosine deaminase gene driven by the cytomegalovirus (CMV) promoter, infected HT29 colon carcinoma cells in vitro and in vivo, and evaluated cell growth over time. AdCMV.CD produced a functional cytosine deaminase protein in HT29 cells in vitro as evidenced by the ability of lysates from the infected cells to convert [3H]5FC to its active metabolite 5-fluorouracil (5FU). The AdCMV.CD vector effectively suppressed HT29 cell growth in vitro in the presence of 5FC in a dose-dependent manner. Infection with AdCMV.CD, when as few as 10% of cells expressed the cytosine deaminase gene, was associated with a bystander effect when combined with 5FC in cell mixing studies. Further, this bystander effect was not dependent on cell-to-cell contact as demonstrated by suppression of [3H]thymidine incorporation in HT29 cells when supernatant from AdCMV.CD-infected cells treated with 5FC was transferred to uninfected cells. Consistent with these in vitro observations, when AdCMV.CD was directly injected into established subcutaneous HT29 tumors in nude mice receiving 5FC, there was a four-fold reduction in tumor size at day 15 compared to controls, and a five-fold reduction at day 28. These observations suggest that adenovirus-mediated gene transfer of the E. coli cytosine deaminase gene and concomitant administration of 5FC may have potential as a strategy for local control of the growth of tumor cells susceptible to 5FU.

UR - http://www.scopus.com/inward/record.url?scp=0028795075&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028795075&partnerID=8YFLogxK

U2 - 10.1089/hum.1995.6.8-1055

DO - 10.1089/hum.1995.6.8-1055

M3 - Article

C2 - 7578418

AN - SCOPUS:0028795075

VL - 6

SP - 1055

EP - 1063

JO - Human Gene Therapy

JF - Human Gene Therapy

SN - 1043-0342

IS - 8

ER -