Impact assessment of supply-side and demand-side policies on energy consumption and CO 2 emissions from urban passenger transportation: The case of Istanbul

İrfan Batur, Islam Safak Bayram, Muammer Koç

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The transportation sector accounts for about a quarter of global energy consumption and energy-related carbon emissions. To design and realize sustainable urban transportation, it is vital to understand and analyze interactions between a set of dynamic factors that shape transportation patterns, behaviors, and impacts. To this end, this study aims to develop a systems dynamics (SD) model for Istanbul, Turkey to simulate its urban motorized passenger transport system for analyzing numerous policies under different scenarios and assessing their potential effects in reducing energy consumption and CO 2 emissions in the upcoming years. The constructed SD model includes four subsystems: population, household disposable income, transport, and energy and CO 2 emissions. Based on historical data (2000–2015) and model validation processes, the energy consumption and the associated CO 2 emissions from motorized passenger transport are forecasted for the following scenarios. The first one is business as usual scenario (BAU) which is designed to show how energy use and the associated CO 2 emissions would evolve over time with the current development plans. The second and third scenarios constitute supply management measures (SMM) which consider different levels of improvements in the fuel economy of the vehicle fleet and reduced carbon emission intensity in electricity generation through increased share of renewable energy use. The fourth and fifth scenarios consider travel demand management (TDM) policies that include different levels of transport cost increase, and trip length reduction. Finally, the last two scenarios include integrated scenarios that are composed of the SMM and TDM options. In detail, compared to the BAU scenario, integrated scenario considers (1) a 10% improvement in the fuel economy of the vehicles, (2) a 10% reduction in the emission intensity of electricity generation, (3) a 30% increase in the transportation cost, and (4) a 15% reduction in the trip lengths. Under the BAU scenario, the SD model shows that energy consumption per capita from passenger trips will increase from 183 L of oil equivalent in 2016 to 315 L of oil equivalent in 2025 while the associated CO 2 emissions per capita will increase from 460 kg in 2016 to 807 kg in 2025. To combat this dramatic growth, the findings indicate that the ambitious integrated scenario achieves the lowest energy consumption and CO 2 emissions by offering a 33.5% expected reduction in total energy consumption and a 32.8% expected reduction in total CO 2 emissions.

Original languageEnglish
Pages (from-to)391-410
Number of pages20
JournalJournal of Cleaner Production
Volume219
DOIs
Publication statusPublished - 10 May 2019

Fingerprint

Energy utilization
Dynamic models
Fuel economy
travel demand
electricity generation
carbon emission
Electricity
energy use
Urban transportation
Industry
Carbon
policy
energy consumption
impact assessment
demand
Scenarios
Energy consumption
Supply side
Impact assessment
Costs

Keywords

  • CO emissions
  • Energy
  • Istanbul
  • System dynamics
  • Transport policy

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Environmental Science(all)
  • Strategy and Management
  • Industrial and Manufacturing Engineering

Cite this

@article{765c49f45cdb4a32aff049f46f6a4207,
title = "Impact assessment of supply-side and demand-side policies on energy consumption and CO 2 emissions from urban passenger transportation: The case of Istanbul",
abstract = "The transportation sector accounts for about a quarter of global energy consumption and energy-related carbon emissions. To design and realize sustainable urban transportation, it is vital to understand and analyze interactions between a set of dynamic factors that shape transportation patterns, behaviors, and impacts. To this end, this study aims to develop a systems dynamics (SD) model for Istanbul, Turkey to simulate its urban motorized passenger transport system for analyzing numerous policies under different scenarios and assessing their potential effects in reducing energy consumption and CO 2 emissions in the upcoming years. The constructed SD model includes four subsystems: population, household disposable income, transport, and energy and CO 2 emissions. Based on historical data (2000–2015) and model validation processes, the energy consumption and the associated CO 2 emissions from motorized passenger transport are forecasted for the following scenarios. The first one is business as usual scenario (BAU) which is designed to show how energy use and the associated CO 2 emissions would evolve over time with the current development plans. The second and third scenarios constitute supply management measures (SMM) which consider different levels of improvements in the fuel economy of the vehicle fleet and reduced carbon emission intensity in electricity generation through increased share of renewable energy use. The fourth and fifth scenarios consider travel demand management (TDM) policies that include different levels of transport cost increase, and trip length reduction. Finally, the last two scenarios include integrated scenarios that are composed of the SMM and TDM options. In detail, compared to the BAU scenario, integrated scenario considers (1) a 10{\%} improvement in the fuel economy of the vehicles, (2) a 10{\%} reduction in the emission intensity of electricity generation, (3) a 30{\%} increase in the transportation cost, and (4) a 15{\%} reduction in the trip lengths. Under the BAU scenario, the SD model shows that energy consumption per capita from passenger trips will increase from 183 L of oil equivalent in 2016 to 315 L of oil equivalent in 2025 while the associated CO 2 emissions per capita will increase from 460 kg in 2016 to 807 kg in 2025. To combat this dramatic growth, the findings indicate that the ambitious integrated scenario achieves the lowest energy consumption and CO 2 emissions by offering a 33.5{\%} expected reduction in total energy consumption and a 32.8{\%} expected reduction in total CO 2 emissions.",
keywords = "CO emissions, Energy, Istanbul, System dynamics, Transport policy",
author = "İrfan Batur and Bayram, {Islam Safak} and Muammer Ko{\cc}",
year = "2019",
month = "5",
day = "10",
doi = "10.1016/j.jclepro.2019.02.064",
language = "English",
volume = "219",
pages = "391--410",
journal = "Journal of Cleaner Production",
issn = "0959-6526",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Impact assessment of supply-side and demand-side policies on energy consumption and CO 2 emissions from urban passenger transportation

T2 - The case of Istanbul

AU - Batur, İrfan

AU - Bayram, Islam Safak

AU - Koç, Muammer

PY - 2019/5/10

Y1 - 2019/5/10

N2 - The transportation sector accounts for about a quarter of global energy consumption and energy-related carbon emissions. To design and realize sustainable urban transportation, it is vital to understand and analyze interactions between a set of dynamic factors that shape transportation patterns, behaviors, and impacts. To this end, this study aims to develop a systems dynamics (SD) model for Istanbul, Turkey to simulate its urban motorized passenger transport system for analyzing numerous policies under different scenarios and assessing their potential effects in reducing energy consumption and CO 2 emissions in the upcoming years. The constructed SD model includes four subsystems: population, household disposable income, transport, and energy and CO 2 emissions. Based on historical data (2000–2015) and model validation processes, the energy consumption and the associated CO 2 emissions from motorized passenger transport are forecasted for the following scenarios. The first one is business as usual scenario (BAU) which is designed to show how energy use and the associated CO 2 emissions would evolve over time with the current development plans. The second and third scenarios constitute supply management measures (SMM) which consider different levels of improvements in the fuel economy of the vehicle fleet and reduced carbon emission intensity in electricity generation through increased share of renewable energy use. The fourth and fifth scenarios consider travel demand management (TDM) policies that include different levels of transport cost increase, and trip length reduction. Finally, the last two scenarios include integrated scenarios that are composed of the SMM and TDM options. In detail, compared to the BAU scenario, integrated scenario considers (1) a 10% improvement in the fuel economy of the vehicles, (2) a 10% reduction in the emission intensity of electricity generation, (3) a 30% increase in the transportation cost, and (4) a 15% reduction in the trip lengths. Under the BAU scenario, the SD model shows that energy consumption per capita from passenger trips will increase from 183 L of oil equivalent in 2016 to 315 L of oil equivalent in 2025 while the associated CO 2 emissions per capita will increase from 460 kg in 2016 to 807 kg in 2025. To combat this dramatic growth, the findings indicate that the ambitious integrated scenario achieves the lowest energy consumption and CO 2 emissions by offering a 33.5% expected reduction in total energy consumption and a 32.8% expected reduction in total CO 2 emissions.

AB - The transportation sector accounts for about a quarter of global energy consumption and energy-related carbon emissions. To design and realize sustainable urban transportation, it is vital to understand and analyze interactions between a set of dynamic factors that shape transportation patterns, behaviors, and impacts. To this end, this study aims to develop a systems dynamics (SD) model for Istanbul, Turkey to simulate its urban motorized passenger transport system for analyzing numerous policies under different scenarios and assessing their potential effects in reducing energy consumption and CO 2 emissions in the upcoming years. The constructed SD model includes four subsystems: population, household disposable income, transport, and energy and CO 2 emissions. Based on historical data (2000–2015) and model validation processes, the energy consumption and the associated CO 2 emissions from motorized passenger transport are forecasted for the following scenarios. The first one is business as usual scenario (BAU) which is designed to show how energy use and the associated CO 2 emissions would evolve over time with the current development plans. The second and third scenarios constitute supply management measures (SMM) which consider different levels of improvements in the fuel economy of the vehicle fleet and reduced carbon emission intensity in electricity generation through increased share of renewable energy use. The fourth and fifth scenarios consider travel demand management (TDM) policies that include different levels of transport cost increase, and trip length reduction. Finally, the last two scenarios include integrated scenarios that are composed of the SMM and TDM options. In detail, compared to the BAU scenario, integrated scenario considers (1) a 10% improvement in the fuel economy of the vehicles, (2) a 10% reduction in the emission intensity of electricity generation, (3) a 30% increase in the transportation cost, and (4) a 15% reduction in the trip lengths. Under the BAU scenario, the SD model shows that energy consumption per capita from passenger trips will increase from 183 L of oil equivalent in 2016 to 315 L of oil equivalent in 2025 while the associated CO 2 emissions per capita will increase from 460 kg in 2016 to 807 kg in 2025. To combat this dramatic growth, the findings indicate that the ambitious integrated scenario achieves the lowest energy consumption and CO 2 emissions by offering a 33.5% expected reduction in total energy consumption and a 32.8% expected reduction in total CO 2 emissions.

KW - CO emissions

KW - Energy

KW - Istanbul

KW - System dynamics

KW - Transport policy

UR - http://www.scopus.com/inward/record.url?scp=85061613003&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85061613003&partnerID=8YFLogxK

U2 - 10.1016/j.jclepro.2019.02.064

DO - 10.1016/j.jclepro.2019.02.064

M3 - Article

AN - SCOPUS:85061613003

VL - 219

SP - 391

EP - 410

JO - Journal of Cleaner Production

JF - Journal of Cleaner Production

SN - 0959-6526

ER -