Human immunodeficiency virus type-1 accessory protein Vpr

A causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome?

Tomoshige Kino, George P. Chrousos

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Recent advances in the development of three different types of antiviral drugs, the nucleotide and non-nucleotide analogues acting as reverse transcriptase inhibitors (NRTIs) and the nonpeptidic viral protease inhibitors (PI), and their introduction in the management of patients with AIDS, either alone or in combination, have dramatically improved the clinical course of the disease and prolonged life expectancy in patients with AIDS. The increase in life expectancy in association with the long-term use of the above antiviral agents, however, have generated novel morbidities and complications. Central among them is the quite common AIDS-related insulin resistance and lipodystrophy syndrome, which is characterized by a striking phenotype and marked metabolic disturbances. To look for the pathologic causes of this particular syndrome, we focused on one of the HIV-1 accessory proteins, Vpr, which has multiple functions, such as virion incorporation, nuclear translocation of the HIV-1 preintegration complex, nucleo-cytoplasmic shuttling, transcriptional activation, and induction of apoptosis. Vpr may also act like a hormone, which is secreted into the extracellular space and affects the function of distant organs. Vpr functions as a coactivator of the glucocorticoid receptor and potentiates the action of glucocorticoid hormones, thereby inducing tissue glucocorticoid hypersensitivity. Vpr also arrests host cells at the G2/M phase of the cell cycle by interacting with novel 14-3-3 proteins. Vpr facilitates the interaction of 14-3-3 and its partner protein Cdc25C, which is critical for the transition of G2/ M checkpoint in the cell cycle, and suppresses its activity by segregating it into the cytoplasm. The same Vpr protein also suppresses the association of 14-3-3 with other partner molecules, the Foxo transcription factors. Since the Foxo proteins function as negative transcription factors for insulin, Vpr may cause resistance of tissues to insulin. Through these two newly identified functions of Vpr, namely, coactivation of glucocorticoid receptor activity and inhibition of insulin effects on Foxo proteins, Vpr may participate in the development of AIDS-related insulin resistance/lipodystrophy syndrome.

Original languageEnglish
Pages (from-to)153-167
Number of pages15
JournalAnnals of the New York Academy of Sciences
Volume1024
DOIs
Publication statusPublished - 2004
Externally publishedYes

Fingerprint

vpr Gene Products
Lipodystrophy
Accessories
Viruses
Insulin Resistance
HIV-1
Acquired Immunodeficiency Syndrome
Insulin
Glucocorticoid Receptors
Life Expectancy
Glucocorticoids
Antiviral Agents
Transcription Factors
Hormones
G2 Phase Cell Cycle Checkpoints
14-3-3 Proteins
Reverse Transcriptase Inhibitors
Cells
Association reactions
G2 Phase

Keywords

  • HIV-1 accessory protein
  • Insulin resistance
  • Lipodystrophy syndrome
  • Vpr

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science

Cite this

@article{600d5cc6a53f4eac82370a7f460e8448,
title = "Human immunodeficiency virus type-1 accessory protein Vpr: A causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome?",
abstract = "Recent advances in the development of three different types of antiviral drugs, the nucleotide and non-nucleotide analogues acting as reverse transcriptase inhibitors (NRTIs) and the nonpeptidic viral protease inhibitors (PI), and their introduction in the management of patients with AIDS, either alone or in combination, have dramatically improved the clinical course of the disease and prolonged life expectancy in patients with AIDS. The increase in life expectancy in association with the long-term use of the above antiviral agents, however, have generated novel morbidities and complications. Central among them is the quite common AIDS-related insulin resistance and lipodystrophy syndrome, which is characterized by a striking phenotype and marked metabolic disturbances. To look for the pathologic causes of this particular syndrome, we focused on one of the HIV-1 accessory proteins, Vpr, which has multiple functions, such as virion incorporation, nuclear translocation of the HIV-1 preintegration complex, nucleo-cytoplasmic shuttling, transcriptional activation, and induction of apoptosis. Vpr may also act like a hormone, which is secreted into the extracellular space and affects the function of distant organs. Vpr functions as a coactivator of the glucocorticoid receptor and potentiates the action of glucocorticoid hormones, thereby inducing tissue glucocorticoid hypersensitivity. Vpr also arrests host cells at the G2/M phase of the cell cycle by interacting with novel 14-3-3 proteins. Vpr facilitates the interaction of 14-3-3 and its partner protein Cdc25C, which is critical for the transition of G2/ M checkpoint in the cell cycle, and suppresses its activity by segregating it into the cytoplasm. The same Vpr protein also suppresses the association of 14-3-3 with other partner molecules, the Foxo transcription factors. Since the Foxo proteins function as negative transcription factors for insulin, Vpr may cause resistance of tissues to insulin. Through these two newly identified functions of Vpr, namely, coactivation of glucocorticoid receptor activity and inhibition of insulin effects on Foxo proteins, Vpr may participate in the development of AIDS-related insulin resistance/lipodystrophy syndrome.",
keywords = "HIV-1 accessory protein, Insulin resistance, Lipodystrophy syndrome, Vpr",
author = "Tomoshige Kino and Chrousos, {George P.}",
year = "2004",
doi = "10.1196/annals.1321.013",
language = "English",
volume = "1024",
pages = "153--167",
journal = "Annals of The Lyceum of Natural History of New York",
issn = "0890-6564",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Human immunodeficiency virus type-1 accessory protein Vpr

T2 - A causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome?

AU - Kino, Tomoshige

AU - Chrousos, George P.

PY - 2004

Y1 - 2004

N2 - Recent advances in the development of three different types of antiviral drugs, the nucleotide and non-nucleotide analogues acting as reverse transcriptase inhibitors (NRTIs) and the nonpeptidic viral protease inhibitors (PI), and their introduction in the management of patients with AIDS, either alone or in combination, have dramatically improved the clinical course of the disease and prolonged life expectancy in patients with AIDS. The increase in life expectancy in association with the long-term use of the above antiviral agents, however, have generated novel morbidities and complications. Central among them is the quite common AIDS-related insulin resistance and lipodystrophy syndrome, which is characterized by a striking phenotype and marked metabolic disturbances. To look for the pathologic causes of this particular syndrome, we focused on one of the HIV-1 accessory proteins, Vpr, which has multiple functions, such as virion incorporation, nuclear translocation of the HIV-1 preintegration complex, nucleo-cytoplasmic shuttling, transcriptional activation, and induction of apoptosis. Vpr may also act like a hormone, which is secreted into the extracellular space and affects the function of distant organs. Vpr functions as a coactivator of the glucocorticoid receptor and potentiates the action of glucocorticoid hormones, thereby inducing tissue glucocorticoid hypersensitivity. Vpr also arrests host cells at the G2/M phase of the cell cycle by interacting with novel 14-3-3 proteins. Vpr facilitates the interaction of 14-3-3 and its partner protein Cdc25C, which is critical for the transition of G2/ M checkpoint in the cell cycle, and suppresses its activity by segregating it into the cytoplasm. The same Vpr protein also suppresses the association of 14-3-3 with other partner molecules, the Foxo transcription factors. Since the Foxo proteins function as negative transcription factors for insulin, Vpr may cause resistance of tissues to insulin. Through these two newly identified functions of Vpr, namely, coactivation of glucocorticoid receptor activity and inhibition of insulin effects on Foxo proteins, Vpr may participate in the development of AIDS-related insulin resistance/lipodystrophy syndrome.

AB - Recent advances in the development of three different types of antiviral drugs, the nucleotide and non-nucleotide analogues acting as reverse transcriptase inhibitors (NRTIs) and the nonpeptidic viral protease inhibitors (PI), and their introduction in the management of patients with AIDS, either alone or in combination, have dramatically improved the clinical course of the disease and prolonged life expectancy in patients with AIDS. The increase in life expectancy in association with the long-term use of the above antiviral agents, however, have generated novel morbidities and complications. Central among them is the quite common AIDS-related insulin resistance and lipodystrophy syndrome, which is characterized by a striking phenotype and marked metabolic disturbances. To look for the pathologic causes of this particular syndrome, we focused on one of the HIV-1 accessory proteins, Vpr, which has multiple functions, such as virion incorporation, nuclear translocation of the HIV-1 preintegration complex, nucleo-cytoplasmic shuttling, transcriptional activation, and induction of apoptosis. Vpr may also act like a hormone, which is secreted into the extracellular space and affects the function of distant organs. Vpr functions as a coactivator of the glucocorticoid receptor and potentiates the action of glucocorticoid hormones, thereby inducing tissue glucocorticoid hypersensitivity. Vpr also arrests host cells at the G2/M phase of the cell cycle by interacting with novel 14-3-3 proteins. Vpr facilitates the interaction of 14-3-3 and its partner protein Cdc25C, which is critical for the transition of G2/ M checkpoint in the cell cycle, and suppresses its activity by segregating it into the cytoplasm. The same Vpr protein also suppresses the association of 14-3-3 with other partner molecules, the Foxo transcription factors. Since the Foxo proteins function as negative transcription factors for insulin, Vpr may cause resistance of tissues to insulin. Through these two newly identified functions of Vpr, namely, coactivation of glucocorticoid receptor activity and inhibition of insulin effects on Foxo proteins, Vpr may participate in the development of AIDS-related insulin resistance/lipodystrophy syndrome.

KW - HIV-1 accessory protein

KW - Insulin resistance

KW - Lipodystrophy syndrome

KW - Vpr

UR - http://www.scopus.com/inward/record.url?scp=3042828854&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3042828854&partnerID=8YFLogxK

U2 - 10.1196/annals.1321.013

DO - 10.1196/annals.1321.013

M3 - Article

VL - 1024

SP - 153

EP - 167

JO - Annals of The Lyceum of Natural History of New York

JF - Annals of The Lyceum of Natural History of New York

SN - 0890-6564

ER -