High-performance predictive control of quasi-impedance source inverter

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

The quasi-Z-source inverter (qZSI) has attracted much attention for motor drives and renewable energy applications due to its capability to boost or buck in a single converter stage. However, this capability is associated with different challenges related to the closed-loop control of currents, control the dc capacitor voltage, produce three-phase ac output current with high dynamic performance, and obtain continuous and low ripple input current. This paper presents a predictive control strategy for a three-phase qZSI that fulfills these requirements without adding any additional layers of control loops. The proposed controller implements a discrete-time model of the qZSI to predict the future behavior of the circuit variables for each switching state, along with a set of multiobjective control variables all in one cost function. The quasi-impedance network and the ac load are considered together when designing the controller in order to obtain stability of the impedance network with a step change in the output reference. A detailed comparative investigation between the proposed controller and the conventional proportional-integral (PI) controller is presented to prove the superiority of the proposed method over the conventional control method. Simulation and experimental results are presented.

Original languageEnglish
Article number7412780
Pages (from-to)3251-3262
Number of pages12
JournalIEEE Transactions on Power Electronics
Volume32
Issue number4
DOIs
Publication statusPublished - 1 Apr 2017

    Fingerprint

Keywords

  • DC-AC power conversion
  • model predictive control (MPC)
  • quasi-Z-source inverter (qZSI)

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this