Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification

Hongwei Bai, Lei Liu, Zhaoyang Liu, Darren Delai Sun

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl- in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti4+ from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG=1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti4+ by increasing the content of EG at a molar ratio of TTIP:EG=1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2 nanoribbon/wire spheres have better photodegradation ability of AO 7 and RhB pollutants so as to result in higher ability in mitigating fouling, and keep higher flux than TiO2 P25 under the same conditions. It is believable that this study is of great significances both in synthesizing hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires, and in providing a "win-win" strategy for high performance concurrent photocatalytic membrane water purification featured as high flux, high removal rate of pollutants, low fouling and long membrane lifespan.

Original languageEnglish
Pages (from-to)4126-4138
Number of pages13
JournalWater Research
Volume47
Issue number12
DOIs
Publication statusPublished - 1 Aug 2013
Externally publishedYes

Fingerprint

Nanoribbons
Nanospheres
Purification
Wire
membrane
Membranes
fouling
Water
Fouling
hydrolysis
Fluxes
Hydrolysis
pollutant
Nanowires
water purification
Membrane fouling
photodegradation
Photocatalysis
Organic pollutants
Photodegradation

Keywords

  • 3D dendritic
  • Concurrent
  • Hierarchical
  • Membrane
  • Photocatalytic water purification
  • TiO nanoribbon/wire spheres

ASJC Scopus subject areas

  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Ecological Modelling

Cite this

Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification. / Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai.

In: Water Research, Vol. 47, No. 12, 01.08.2013, p. 4126-4138.

Research output: Contribution to journalArticle

@article{a29939cce61b4e5084bdcd4a2b47180b,
title = "Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification",
abstract = "Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl- in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti4+ from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG=1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti4+ by increasing the content of EG at a molar ratio of TTIP:EG=1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A {"}win-win{"} strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2 nanoribbon/wire spheres have better photodegradation ability of AO 7 and RhB pollutants so as to result in higher ability in mitigating fouling, and keep higher flux than TiO2 P25 under the same conditions. It is believable that this study is of great significances both in synthesizing hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires, and in providing a {"}win-win{"} strategy for high performance concurrent photocatalytic membrane water purification featured as high flux, high removal rate of pollutants, low fouling and long membrane lifespan.",
keywords = "3D dendritic, Concurrent, Hierarchical, Membrane, Photocatalytic water purification, TiO nanoribbon/wire spheres",
author = "Hongwei Bai and Lei Liu and Zhaoyang Liu and Sun, {Darren Delai}",
year = "2013",
month = "8",
day = "1",
doi = "10.1016/j.watres.2012.09.059",
language = "English",
volume = "47",
pages = "4126--4138",
journal = "Water Research",
issn = "0043-1354",
publisher = "Elsevier Limited",
number = "12",

}

TY - JOUR

T1 - Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification

AU - Bai, Hongwei

AU - Liu, Lei

AU - Liu, Zhaoyang

AU - Sun, Darren Delai

PY - 2013/8/1

Y1 - 2013/8/1

N2 - Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl- in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti4+ from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG=1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti4+ by increasing the content of EG at a molar ratio of TTIP:EG=1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2 nanoribbon/wire spheres have better photodegradation ability of AO 7 and RhB pollutants so as to result in higher ability in mitigating fouling, and keep higher flux than TiO2 P25 under the same conditions. It is believable that this study is of great significances both in synthesizing hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires, and in providing a "win-win" strategy for high performance concurrent photocatalytic membrane water purification featured as high flux, high removal rate of pollutants, low fouling and long membrane lifespan.

AB - Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl- in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti4+ from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG=1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti4+ by increasing the content of EG at a molar ratio of TTIP:EG=1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2 nanoribbon/wire spheres have better photodegradation ability of AO 7 and RhB pollutants so as to result in higher ability in mitigating fouling, and keep higher flux than TiO2 P25 under the same conditions. It is believable that this study is of great significances both in synthesizing hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires, and in providing a "win-win" strategy for high performance concurrent photocatalytic membrane water purification featured as high flux, high removal rate of pollutants, low fouling and long membrane lifespan.

KW - 3D dendritic

KW - Concurrent

KW - Hierarchical

KW - Membrane

KW - Photocatalytic water purification

KW - TiO nanoribbon/wire spheres

UR - http://www.scopus.com/inward/record.url?scp=84879092297&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879092297&partnerID=8YFLogxK

U2 - 10.1016/j.watres.2012.09.059

DO - 10.1016/j.watres.2012.09.059

M3 - Article

VL - 47

SP - 4126

EP - 4138

JO - Water Research

JF - Water Research

SN - 0043-1354

IS - 12

ER -