Glucocorticoids suppress human immunodeficiency virus type-1 long terminal repeat activity in a cell type-specific, glucocorticoid receptor-mediated fashion

Direct protective effects at variance with clinical phenomenology

Tomoshige Kino, Jeffrey B. Kopp, George P. Chrousos

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Glucocorticoid administration and/or excess secretion have been associated with increased Human Immunodeficiency Virus Type-1 (HIV-1) replication and AIDS progression. The HIV-1 long terminal repeat (LTR) promoter contains glucocorticoid-responsive element (GRE)-like sequences that could mediate a positive effect of glucocorticoids on HIV-1. In addition, we recently demonstrated that the HIV-1 accessory protein Vpr is a potent coactivator of the glucocorticoid receptor, which, like the host coactivator p300, potentiates the effect of glucocorticoids on GRE-containing, glucocorticoid-responsive genes. Such an effect may increase the sensitivity of several host target tissues to glucocorticoids by several fold, and may, thus, contribute to a positive effect of glucocorticoids on the HIV-1-LTR in infected host cells. In this study, we determined the direct effect of glucocorticoids on HIV-1-LTR by examining the ability of dexamethasone to modulate the activity of this promoter coupled to the luciferase reporter gene in human cell lines. Dexamethasone markedly inhibited Tat-stimulated, p300- or Vpr-enhanced luciferase activities in a cell-type specific, dose-dependent, and glucocorticoid receptor-mediated fashion. This effect of dexamethasone was not potentiated by Vpr, was antagonized by the glucocorticoid receptor antagonist RU 486 and required the DNA-binding domain of the receptor. These data suggest that the inhibitory effect of glucocorticoids on the HIV-1-LTR may be exerted via non-GRE-dependent inhibition of the strongly positive host transcription factor NF-κB, which interacts with the DNA- and ligand-binding domains of the receptor. Alternatively, it is also possible that dexamethasone-activated glucocorticoid receptor competes with other transcription factors for their binding sites on the promoter region or squelches transcription factors shared by HIV-1-LTR and glucocorticoid-responsive promoters. We conclude that glucocorticoids suppress, rather than stimulate, the HIV-1 promoter, thus acting, protectively for the host. Their apparent negative clinical association with AIDS is most likely due to immunosuppression of the host.

Original languageEnglish
Pages (from-to)283-290
Number of pages8
JournalJournal of Steroid Biochemistry and Molecular Biology
Volume75
Issue number4-5
DOIs
Publication statusPublished - 31 Dec 2000
Externally publishedYes

Fingerprint

HIV Long Terminal Repeat
Terminal Repeat Sequences
Glucocorticoid Receptors
Viruses
Glucocorticoids
HIV-1
Dexamethasone
Transcription Factors
Luciferases
Acquired Immunodeficiency Syndrome
vpr Gene Products
Genes
Mifepristone
DNA
Accessories
Reporter Genes
Genetic Promoter Regions
Immunosuppression

Keywords

  • Glucocorticoid receptor
  • Glucocorticoids
  • Human immunodeficiency virus
  • Protective effects
  • Type-1 long terminal repeat activity

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Medicine(all)
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Endocrinology
  • Clinical Biochemistry
  • Cell Biology

Cite this

@article{d0539f996e1647b0bcdd0c9799dfc175,
title = "Glucocorticoids suppress human immunodeficiency virus type-1 long terminal repeat activity in a cell type-specific, glucocorticoid receptor-mediated fashion: Direct protective effects at variance with clinical phenomenology",
abstract = "Glucocorticoid administration and/or excess secretion have been associated with increased Human Immunodeficiency Virus Type-1 (HIV-1) replication and AIDS progression. The HIV-1 long terminal repeat (LTR) promoter contains glucocorticoid-responsive element (GRE)-like sequences that could mediate a positive effect of glucocorticoids on HIV-1. In addition, we recently demonstrated that the HIV-1 accessory protein Vpr is a potent coactivator of the glucocorticoid receptor, which, like the host coactivator p300, potentiates the effect of glucocorticoids on GRE-containing, glucocorticoid-responsive genes. Such an effect may increase the sensitivity of several host target tissues to glucocorticoids by several fold, and may, thus, contribute to a positive effect of glucocorticoids on the HIV-1-LTR in infected host cells. In this study, we determined the direct effect of glucocorticoids on HIV-1-LTR by examining the ability of dexamethasone to modulate the activity of this promoter coupled to the luciferase reporter gene in human cell lines. Dexamethasone markedly inhibited Tat-stimulated, p300- or Vpr-enhanced luciferase activities in a cell-type specific, dose-dependent, and glucocorticoid receptor-mediated fashion. This effect of dexamethasone was not potentiated by Vpr, was antagonized by the glucocorticoid receptor antagonist RU 486 and required the DNA-binding domain of the receptor. These data suggest that the inhibitory effect of glucocorticoids on the HIV-1-LTR may be exerted via non-GRE-dependent inhibition of the strongly positive host transcription factor NF-κB, which interacts with the DNA- and ligand-binding domains of the receptor. Alternatively, it is also possible that dexamethasone-activated glucocorticoid receptor competes with other transcription factors for their binding sites on the promoter region or squelches transcription factors shared by HIV-1-LTR and glucocorticoid-responsive promoters. We conclude that glucocorticoids suppress, rather than stimulate, the HIV-1 promoter, thus acting, protectively for the host. Their apparent negative clinical association with AIDS is most likely due to immunosuppression of the host.",
keywords = "Glucocorticoid receptor, Glucocorticoids, Human immunodeficiency virus, Protective effects, Type-1 long terminal repeat activity",
author = "Tomoshige Kino and Kopp, {Jeffrey B.} and Chrousos, {George P.}",
year = "2000",
month = "12",
day = "31",
doi = "10.1016/S0960-0760(00)00187-4",
language = "English",
volume = "75",
pages = "283--290",
journal = "Journal of Steroid Biochemistry and Molecular Biology",
issn = "0960-0760",
publisher = "Elsevier Limited",
number = "4-5",

}

TY - JOUR

T1 - Glucocorticoids suppress human immunodeficiency virus type-1 long terminal repeat activity in a cell type-specific, glucocorticoid receptor-mediated fashion

T2 - Direct protective effects at variance with clinical phenomenology

AU - Kino, Tomoshige

AU - Kopp, Jeffrey B.

AU - Chrousos, George P.

PY - 2000/12/31

Y1 - 2000/12/31

N2 - Glucocorticoid administration and/or excess secretion have been associated with increased Human Immunodeficiency Virus Type-1 (HIV-1) replication and AIDS progression. The HIV-1 long terminal repeat (LTR) promoter contains glucocorticoid-responsive element (GRE)-like sequences that could mediate a positive effect of glucocorticoids on HIV-1. In addition, we recently demonstrated that the HIV-1 accessory protein Vpr is a potent coactivator of the glucocorticoid receptor, which, like the host coactivator p300, potentiates the effect of glucocorticoids on GRE-containing, glucocorticoid-responsive genes. Such an effect may increase the sensitivity of several host target tissues to glucocorticoids by several fold, and may, thus, contribute to a positive effect of glucocorticoids on the HIV-1-LTR in infected host cells. In this study, we determined the direct effect of glucocorticoids on HIV-1-LTR by examining the ability of dexamethasone to modulate the activity of this promoter coupled to the luciferase reporter gene in human cell lines. Dexamethasone markedly inhibited Tat-stimulated, p300- or Vpr-enhanced luciferase activities in a cell-type specific, dose-dependent, and glucocorticoid receptor-mediated fashion. This effect of dexamethasone was not potentiated by Vpr, was antagonized by the glucocorticoid receptor antagonist RU 486 and required the DNA-binding domain of the receptor. These data suggest that the inhibitory effect of glucocorticoids on the HIV-1-LTR may be exerted via non-GRE-dependent inhibition of the strongly positive host transcription factor NF-κB, which interacts with the DNA- and ligand-binding domains of the receptor. Alternatively, it is also possible that dexamethasone-activated glucocorticoid receptor competes with other transcription factors for their binding sites on the promoter region or squelches transcription factors shared by HIV-1-LTR and glucocorticoid-responsive promoters. We conclude that glucocorticoids suppress, rather than stimulate, the HIV-1 promoter, thus acting, protectively for the host. Their apparent negative clinical association with AIDS is most likely due to immunosuppression of the host.

AB - Glucocorticoid administration and/or excess secretion have been associated with increased Human Immunodeficiency Virus Type-1 (HIV-1) replication and AIDS progression. The HIV-1 long terminal repeat (LTR) promoter contains glucocorticoid-responsive element (GRE)-like sequences that could mediate a positive effect of glucocorticoids on HIV-1. In addition, we recently demonstrated that the HIV-1 accessory protein Vpr is a potent coactivator of the glucocorticoid receptor, which, like the host coactivator p300, potentiates the effect of glucocorticoids on GRE-containing, glucocorticoid-responsive genes. Such an effect may increase the sensitivity of several host target tissues to glucocorticoids by several fold, and may, thus, contribute to a positive effect of glucocorticoids on the HIV-1-LTR in infected host cells. In this study, we determined the direct effect of glucocorticoids on HIV-1-LTR by examining the ability of dexamethasone to modulate the activity of this promoter coupled to the luciferase reporter gene in human cell lines. Dexamethasone markedly inhibited Tat-stimulated, p300- or Vpr-enhanced luciferase activities in a cell-type specific, dose-dependent, and glucocorticoid receptor-mediated fashion. This effect of dexamethasone was not potentiated by Vpr, was antagonized by the glucocorticoid receptor antagonist RU 486 and required the DNA-binding domain of the receptor. These data suggest that the inhibitory effect of glucocorticoids on the HIV-1-LTR may be exerted via non-GRE-dependent inhibition of the strongly positive host transcription factor NF-κB, which interacts with the DNA- and ligand-binding domains of the receptor. Alternatively, it is also possible that dexamethasone-activated glucocorticoid receptor competes with other transcription factors for their binding sites on the promoter region or squelches transcription factors shared by HIV-1-LTR and glucocorticoid-responsive promoters. We conclude that glucocorticoids suppress, rather than stimulate, the HIV-1 promoter, thus acting, protectively for the host. Their apparent negative clinical association with AIDS is most likely due to immunosuppression of the host.

KW - Glucocorticoid receptor

KW - Glucocorticoids

KW - Human immunodeficiency virus

KW - Protective effects

KW - Type-1 long terminal repeat activity

UR - http://www.scopus.com/inward/record.url?scp=0034739776&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034739776&partnerID=8YFLogxK

U2 - 10.1016/S0960-0760(00)00187-4

DO - 10.1016/S0960-0760(00)00187-4

M3 - Article

VL - 75

SP - 283

EP - 290

JO - Journal of Steroid Biochemistry and Molecular Biology

JF - Journal of Steroid Biochemistry and Molecular Biology

SN - 0960-0760

IS - 4-5

ER -