Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema

Masaki Watanabe, Julie L. Boyer, Ronald Crystal

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

High-permeability pulmonary edema causing acute respiratory distress syndrome is associated with high mortality. Using a model of intratracheal adenovirus (Ad)-mediated overexpression of human vascular endothelial growth factor (VEGF)-A165 in mouse lung to induce alveolar permeability and consequent pulmonary edema, we hypothesized that systemic administration of a second adenoviral vector expressing an anti-VEGF antibody (AdαVEGFAb) would protect the lung from pulmonary edema. Pulmonary edema was induced in mice by intratracheal administration of AdVEGFA165. To evaluate anti-VEGF antibody therapy, the mice were treated intravenously with AdαVEGFAb, an adenoviral vector encoding the light and heavy chains of an anti-human VEGF antibody with the bevacizumab (Avastin) antigen-binding site. Lung VEGF-A165 and phosphorylated VEGF receptor (VEGFR)-2 levels, histology, lung wet-to-dry weight ratios, and bronchoalveolar lavage fluid (BALF) levels of total protein were assessed. Administration of AdαVEGFAb to mice decreased AdVEGFA165-induced levels of human VEGF-A165 and phosphorylated VEGFR-2 in the lung. Histological analysis of AdαVEGFAb-treated mice demonstrated a reduction of edema fluid in the lung tissue that correlated with a reduction of lung wet-to-dry ratios and BALF total protein levels. Importantly, administration of AdαVEGFAb 48hr after induction of pulmonary edema with AdVEGFA165 was effective in suppressing pulmonary edema. Administration of an adenoviral vector encoding an anti-VEGF antibody that is the equivalent of bevacizumab effectively suppresses VEGF-A165-induced high-permeability pulmonary edema, suggesting that anti-VEGF antibody therapy may represent a novel therapy for high-permeability pulmonary edema.

Original languageEnglish
Pages (from-to)598-610
Number of pages13
JournalHuman Gene Therapy
Volume20
Issue number6
DOIs
Publication statusPublished - 1 Jun 2009
Externally publishedYes

Fingerprint

Pulmonary Edema
Vascular Endothelial Growth Factor A
Permeability
Anti-Idiotypic Antibodies
Lung
Antibodies
Bronchoalveolar Lavage Fluid
Bevacizumab
Vascular Endothelial Growth Factor Receptor-2
Vascular Endothelial Growth Factor Receptor
Adult Respiratory Distress Syndrome
Adenoviridae
Edema
Histology
Proteins
Therapeutics
Binding Sites
Light
Antigens
Weights and Measures

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics

Cite this

Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema. / Watanabe, Masaki; Boyer, Julie L.; Crystal, Ronald.

In: Human Gene Therapy, Vol. 20, No. 6, 01.06.2009, p. 598-610.

Research output: Contribution to journalArticle

@article{bdd992870e664465942c56157add2723,
title = "Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema",
abstract = "High-permeability pulmonary edema causing acute respiratory distress syndrome is associated with high mortality. Using a model of intratracheal adenovirus (Ad)-mediated overexpression of human vascular endothelial growth factor (VEGF)-A165 in mouse lung to induce alveolar permeability and consequent pulmonary edema, we hypothesized that systemic administration of a second adenoviral vector expressing an anti-VEGF antibody (AdαVEGFAb) would protect the lung from pulmonary edema. Pulmonary edema was induced in mice by intratracheal administration of AdVEGFA165. To evaluate anti-VEGF antibody therapy, the mice were treated intravenously with AdαVEGFAb, an adenoviral vector encoding the light and heavy chains of an anti-human VEGF antibody with the bevacizumab (Avastin) antigen-binding site. Lung VEGF-A165 and phosphorylated VEGF receptor (VEGFR)-2 levels, histology, lung wet-to-dry weight ratios, and bronchoalveolar lavage fluid (BALF) levels of total protein were assessed. Administration of AdαVEGFAb to mice decreased AdVEGFA165-induced levels of human VEGF-A165 and phosphorylated VEGFR-2 in the lung. Histological analysis of AdαVEGFAb-treated mice demonstrated a reduction of edema fluid in the lung tissue that correlated with a reduction of lung wet-to-dry ratios and BALF total protein levels. Importantly, administration of AdαVEGFAb 48hr after induction of pulmonary edema with AdVEGFA165 was effective in suppressing pulmonary edema. Administration of an adenoviral vector encoding an anti-VEGF antibody that is the equivalent of bevacizumab effectively suppresses VEGF-A165-induced high-permeability pulmonary edema, suggesting that anti-VEGF antibody therapy may represent a novel therapy for high-permeability pulmonary edema.",
author = "Masaki Watanabe and Boyer, {Julie L.} and Ronald Crystal",
year = "2009",
month = "6",
day = "1",
doi = "10.1089/hum.2008.169",
language = "English",
volume = "20",
pages = "598--610",
journal = "Human Gene Therapy",
issn = "1043-0342",
publisher = "Mary Ann Liebert Inc.",
number = "6",

}

TY - JOUR

T1 - Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema

AU - Watanabe, Masaki

AU - Boyer, Julie L.

AU - Crystal, Ronald

PY - 2009/6/1

Y1 - 2009/6/1

N2 - High-permeability pulmonary edema causing acute respiratory distress syndrome is associated with high mortality. Using a model of intratracheal adenovirus (Ad)-mediated overexpression of human vascular endothelial growth factor (VEGF)-A165 in mouse lung to induce alveolar permeability and consequent pulmonary edema, we hypothesized that systemic administration of a second adenoviral vector expressing an anti-VEGF antibody (AdαVEGFAb) would protect the lung from pulmonary edema. Pulmonary edema was induced in mice by intratracheal administration of AdVEGFA165. To evaluate anti-VEGF antibody therapy, the mice were treated intravenously with AdαVEGFAb, an adenoviral vector encoding the light and heavy chains of an anti-human VEGF antibody with the bevacizumab (Avastin) antigen-binding site. Lung VEGF-A165 and phosphorylated VEGF receptor (VEGFR)-2 levels, histology, lung wet-to-dry weight ratios, and bronchoalveolar lavage fluid (BALF) levels of total protein were assessed. Administration of AdαVEGFAb to mice decreased AdVEGFA165-induced levels of human VEGF-A165 and phosphorylated VEGFR-2 in the lung. Histological analysis of AdαVEGFAb-treated mice demonstrated a reduction of edema fluid in the lung tissue that correlated with a reduction of lung wet-to-dry ratios and BALF total protein levels. Importantly, administration of AdαVEGFAb 48hr after induction of pulmonary edema with AdVEGFA165 was effective in suppressing pulmonary edema. Administration of an adenoviral vector encoding an anti-VEGF antibody that is the equivalent of bevacizumab effectively suppresses VEGF-A165-induced high-permeability pulmonary edema, suggesting that anti-VEGF antibody therapy may represent a novel therapy for high-permeability pulmonary edema.

AB - High-permeability pulmonary edema causing acute respiratory distress syndrome is associated with high mortality. Using a model of intratracheal adenovirus (Ad)-mediated overexpression of human vascular endothelial growth factor (VEGF)-A165 in mouse lung to induce alveolar permeability and consequent pulmonary edema, we hypothesized that systemic administration of a second adenoviral vector expressing an anti-VEGF antibody (AdαVEGFAb) would protect the lung from pulmonary edema. Pulmonary edema was induced in mice by intratracheal administration of AdVEGFA165. To evaluate anti-VEGF antibody therapy, the mice were treated intravenously with AdαVEGFAb, an adenoviral vector encoding the light and heavy chains of an anti-human VEGF antibody with the bevacizumab (Avastin) antigen-binding site. Lung VEGF-A165 and phosphorylated VEGF receptor (VEGFR)-2 levels, histology, lung wet-to-dry weight ratios, and bronchoalveolar lavage fluid (BALF) levels of total protein were assessed. Administration of AdαVEGFAb to mice decreased AdVEGFA165-induced levels of human VEGF-A165 and phosphorylated VEGFR-2 in the lung. Histological analysis of AdαVEGFAb-treated mice demonstrated a reduction of edema fluid in the lung tissue that correlated with a reduction of lung wet-to-dry ratios and BALF total protein levels. Importantly, administration of AdαVEGFAb 48hr after induction of pulmonary edema with AdVEGFA165 was effective in suppressing pulmonary edema. Administration of an adenoviral vector encoding an anti-VEGF antibody that is the equivalent of bevacizumab effectively suppresses VEGF-A165-induced high-permeability pulmonary edema, suggesting that anti-VEGF antibody therapy may represent a novel therapy for high-permeability pulmonary edema.

UR - http://www.scopus.com/inward/record.url?scp=68849084914&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68849084914&partnerID=8YFLogxK

U2 - 10.1089/hum.2008.169

DO - 10.1089/hum.2008.169

M3 - Article

C2 - 19254174

AN - SCOPUS:68849084914

VL - 20

SP - 598

EP - 610

JO - Human Gene Therapy

JF - Human Gene Therapy

SN - 1043-0342

IS - 6

ER -