Gene and genome duplication in Acanthamoeba polyphaga Mimivirus

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.

Original languageEnglish
Pages (from-to)14095-14101
Number of pages7
JournalJournal of Virology
Volume79
Issue number22
DOIs
Publication statusPublished - Nov 2005
Externally publishedYes

Fingerprint

Mimiviridae
Gene Duplication
Genome
DNA Viruses
Genes
Genomic Segmental Duplications
Molecular Evolution
Proteolysis
Viruses

ASJC Scopus subject areas

  • Immunology
  • Virology

Cite this

Gene and genome duplication in Acanthamoeba polyphaga Mimivirus. / Suhre, Karsten.

In: Journal of Virology, Vol. 79, No. 22, 11.2005, p. 14095-14101.

Research output: Contribution to journalArticle

@article{155a2efd9a844f6eaf05353c7e7cfe57,
title = "Gene and genome duplication in Acanthamoeba polyphaga Mimivirus",
abstract = "Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.",
author = "Karsten Suhre",
year = "2005",
month = "11",
doi = "10.1128/JVI.79.22.14095-14101.2005",
language = "English",
volume = "79",
pages = "14095--14101",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "22",

}

TY - JOUR

T1 - Gene and genome duplication in Acanthamoeba polyphaga Mimivirus

AU - Suhre, Karsten

PY - 2005/11

Y1 - 2005/11

N2 - Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.

AB - Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.

UR - http://www.scopus.com/inward/record.url?scp=27644439476&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=27644439476&partnerID=8YFLogxK

U2 - 10.1128/JVI.79.22.14095-14101.2005

DO - 10.1128/JVI.79.22.14095-14101.2005

M3 - Article

VL - 79

SP - 14095

EP - 14101

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 22

ER -