### Abstract

The theory of the relation between optical properties and electronic band structures is reviewed. In the first part, we describe various approaches to go beyond the long-wavelength limit perturbation theoretical approach in the independent particle approximation for linear optical response functions. In the latter, electron-electron interaction effects are only included in as far as they are implicit in the underlying band structure (typically within the local density functional approximation). We discuss the inclusion of quasiparticle corrections to the band structures, local-field and electron-hole interaction effects. A case study of GaN is used to illustrate the discrepancies between theory and experiment that arise from neglect of these effects. On the other hand, the paper also illustrates that in the process of extracting the band structure information from optical spectra, the independent particle model still plays a central role. In the case of nonlinear optical response, even the independent particle model was only recently fully developed. Recent progress in this area and their implementation within the context of first-principles band structure methods is presented next. Some examples are used to illustrate the potentially richer information contained in NLO spectra in relation to the underlying band structures. Secondly, progress in understanding the trends in NLO coefficients in some classes of materials is illustrated with a study of chalcopyrites.

Original language | English |
---|---|

Pages (from-to) | 599-640 |

Number of pages | 42 |

Journal | Physica Status Solidi (B) Basic Research |

Volume | 217 |

Issue number | 1 |

Publication status | Published - 1 Jan 2000 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics

### Cite this

*Physica Status Solidi (B) Basic Research*,

*217*(1), 599-640.

**From band structures to linear and nonlinear optical spectra in semiconductors.** / Lambrecht, W. R L; Rashkeev, Sergey.

Research output: Contribution to journal › Article

*Physica Status Solidi (B) Basic Research*, vol. 217, no. 1, pp. 599-640.

}

TY - JOUR

T1 - From band structures to linear and nonlinear optical spectra in semiconductors

AU - Lambrecht, W. R L

AU - Rashkeev, Sergey

PY - 2000/1/1

Y1 - 2000/1/1

N2 - The theory of the relation between optical properties and electronic band structures is reviewed. In the first part, we describe various approaches to go beyond the long-wavelength limit perturbation theoretical approach in the independent particle approximation for linear optical response functions. In the latter, electron-electron interaction effects are only included in as far as they are implicit in the underlying band structure (typically within the local density functional approximation). We discuss the inclusion of quasiparticle corrections to the band structures, local-field and electron-hole interaction effects. A case study of GaN is used to illustrate the discrepancies between theory and experiment that arise from neglect of these effects. On the other hand, the paper also illustrates that in the process of extracting the band structure information from optical spectra, the independent particle model still plays a central role. In the case of nonlinear optical response, even the independent particle model was only recently fully developed. Recent progress in this area and their implementation within the context of first-principles band structure methods is presented next. Some examples are used to illustrate the potentially richer information contained in NLO spectra in relation to the underlying band structures. Secondly, progress in understanding the trends in NLO coefficients in some classes of materials is illustrated with a study of chalcopyrites.

AB - The theory of the relation between optical properties and electronic band structures is reviewed. In the first part, we describe various approaches to go beyond the long-wavelength limit perturbation theoretical approach in the independent particle approximation for linear optical response functions. In the latter, electron-electron interaction effects are only included in as far as they are implicit in the underlying band structure (typically within the local density functional approximation). We discuss the inclusion of quasiparticle corrections to the band structures, local-field and electron-hole interaction effects. A case study of GaN is used to illustrate the discrepancies between theory and experiment that arise from neglect of these effects. On the other hand, the paper also illustrates that in the process of extracting the band structure information from optical spectra, the independent particle model still plays a central role. In the case of nonlinear optical response, even the independent particle model was only recently fully developed. Recent progress in this area and their implementation within the context of first-principles band structure methods is presented next. Some examples are used to illustrate the potentially richer information contained in NLO spectra in relation to the underlying band structures. Secondly, progress in understanding the trends in NLO coefficients in some classes of materials is illustrated with a study of chalcopyrites.

UR - http://www.scopus.com/inward/record.url?scp=0033632951&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033632951&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0033632951

VL - 217

SP - 599

EP - 640

JO - Physica Status Solidi (B): Basic Research

JF - Physica Status Solidi (B): Basic Research

SN - 0370-1972

IS - 1

ER -