Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE Anticocaine Vaccine

Martin J. Hicks, Stephen M. Kaminsky, Bishnu P. De, Jonathan B. Rosenberg, Suzette M. Evans, Richard W. Foltin, David M. Andrenyak, David E. Moody, George F. Koob, Kim D. Janda, Rodolfo J. Ricart Arbona, Michelle L. Lepherd, Ronald Crystal

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1-E3- serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile.

Original languageEnglish
Pages (from-to)40-49
Number of pages10
JournalHuman Gene Therapy Clinical Development
Volume25
Issue number1
DOIs
Publication statusPublished - 1 Mar 2014
Externally publishedYes

Fingerprint

Cocaine
Primates
Vaccines
Central Nervous System
Pharmaceutical Preparations
Dopamine Plasma Membrane Transport Proteins
Brain
Capsid Proteins
Adenoviridae
Vaccination

ASJC Scopus subject areas

  • Genetics(clinical)

Cite this

Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE Anticocaine Vaccine. / Hicks, Martin J.; Kaminsky, Stephen M.; De, Bishnu P.; Rosenberg, Jonathan B.; Evans, Suzette M.; Foltin, Richard W.; Andrenyak, David M.; Moody, David E.; Koob, George F.; Janda, Kim D.; Ricart Arbona, Rodolfo J.; Lepherd, Michelle L.; Crystal, Ronald.

In: Human Gene Therapy Clinical Development, Vol. 25, No. 1, 01.03.2014, p. 40-49.

Research output: Contribution to journalArticle

Hicks, MJ, Kaminsky, SM, De, BP, Rosenberg, JB, Evans, SM, Foltin, RW, Andrenyak, DM, Moody, DE, Koob, GF, Janda, KD, Ricart Arbona, RJ, Lepherd, ML & Crystal, R 2014, 'Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE Anticocaine Vaccine', Human Gene Therapy Clinical Development, vol. 25, no. 1, pp. 40-49. https://doi.org/10.1089/humc.2013.231
Hicks, Martin J. ; Kaminsky, Stephen M. ; De, Bishnu P. ; Rosenberg, Jonathan B. ; Evans, Suzette M. ; Foltin, Richard W. ; Andrenyak, David M. ; Moody, David E. ; Koob, George F. ; Janda, Kim D. ; Ricart Arbona, Rodolfo J. ; Lepherd, Michelle L. ; Crystal, Ronald. / Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE Anticocaine Vaccine. In: Human Gene Therapy Clinical Development. 2014 ; Vol. 25, No. 1. pp. 40-49.
@article{f459c84d6ea247bb99726e3e27b4aaf0,
title = "Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE Anticocaine Vaccine",
abstract = "Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1-E3- serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile.",
author = "Hicks, {Martin J.} and Kaminsky, {Stephen M.} and De, {Bishnu P.} and Rosenberg, {Jonathan B.} and Evans, {Suzette M.} and Foltin, {Richard W.} and Andrenyak, {David M.} and Moody, {David E.} and Koob, {George F.} and Janda, {Kim D.} and {Ricart Arbona}, {Rodolfo J.} and Lepherd, {Michelle L.} and Ronald Crystal",
year = "2014",
month = "3",
day = "1",
doi = "10.1089/humc.2013.231",
language = "English",
volume = "25",
pages = "40--49",
journal = "Human gene therapy. Clinical development",
issn = "2324-8637",
publisher = "Mary Ann Liebert Inc.",
number = "1",

}

TY - JOUR

T1 - Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE Anticocaine Vaccine

AU - Hicks, Martin J.

AU - Kaminsky, Stephen M.

AU - De, Bishnu P.

AU - Rosenberg, Jonathan B.

AU - Evans, Suzette M.

AU - Foltin, Richard W.

AU - Andrenyak, David M.

AU - Moody, David E.

AU - Koob, George F.

AU - Janda, Kim D.

AU - Ricart Arbona, Rodolfo J.

AU - Lepherd, Michelle L.

AU - Crystal, Ronald

PY - 2014/3/1

Y1 - 2014/3/1

N2 - Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1-E3- serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile.

AB - Cocaine use disorders are mediated by the cocaine blockade of the dopamine transporter in the central nervous system (CNS). On the basis of the concept that these effects could be obviated if cocaine were prevented from reaching its cognate receptors in the CNS, we have developed an anticocaine vaccine, dAd5GNE, based on a cocaine analog covalently linked to capsid proteins of an E1-E3- serotype 5 adenovirus. While the vaccine effectively blocks systemically administered cocaine from reaching the brain by mediating sequestration of the cocaine in the blood, the fact that cocaine also has significant peripheral effects raises concerns that vaccination-mediated redistribution could lead to adverse effects in the visceral organs. The distribution of systemically administered cocaine at a weight-adjusted typical human dose was evaluated along with cocaine metabolites in both dAd5GNE-vaccinated and control nonhuman primates. dAd5GNE sequestration of cocaine to the blood not only prevented cocaine access to the CNS, but also limited access of both the drug and its metabolites to other cocaine-sensitive organs. The levels of cocaine in the blood of vaccinated animals rapidly decreased, suggesting that while the antibody limits access of the drug and its active metabolites to the brain and sensitive organs of the periphery, it does not prolong drug levels in the blood compartment. Gross and histopathology of major organs found no vaccine-mediated untoward effects. These results build on our earlier measures of efficacy and demonstrate that the dAd5GNE vaccine-mediated redistribution of administered cocaine is not likely to impact the vaccine safety profile.

UR - http://www.scopus.com/inward/record.url?scp=84904434125&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904434125&partnerID=8YFLogxK

U2 - 10.1089/humc.2013.231

DO - 10.1089/humc.2013.231

M3 - Article

VL - 25

SP - 40

EP - 49

JO - Human gene therapy. Clinical development

JF - Human gene therapy. Clinical development

SN - 2324-8637

IS - 1

ER -