Extraction des nombres de Betti avec un modèle géné ratif

Translated title of the contribution: Extraction of Betti numbers with a generative model

Maxime Maillot, Michael Aupetit, Gérard Govaert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Exploring multidimensional data is a complex analytic task. We propose a generative model called Generative Simplicial Complex, to extract topological invariants called Betti numbers from the data. The GSC is used to analyze toys data and image data. The GSC appears to be more robust to noise than the Witness Complex, a state of the art geometrical technique to extract Betti numbers of point set data.

Original languageFrench
Title of host publicationRevue des Nouvelles Technologies de l'Information
Pages97-102
Number of pages6
VolumeE.24
Publication statusPublished - 2013
Externally publishedYes
Event13emes Journees Francophones sur l'Extraction et la Gestion des Connaissances, EGC 2013 - 13th French-Speaking Conference on Knowledge Discovery and Management, EGC 2013 - Toulouse, France
Duration: 29 Jan 20131 Feb 2013

Other

Other
CountryFrance
CityToulouse
Period29/1/131/2/13

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Information Systems
  • Software

Cite this

Maillot, M., Aupetit, M., & Govaert, G. (2013). Extraction des nombres de Betti avec un modèle géné ratif. In Revue des Nouvelles Technologies de l'Information (Vol. E.24, pp. 97-102)

Extraction des nombres de Betti avec un modèle géné ratif. / Maillot, Maxime; Aupetit, Michael; Govaert, Gérard.

Revue des Nouvelles Technologies de l'Information. Vol. E.24 2013. p. 97-102.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Maillot, M, Aupetit, M & Govaert, G 2013, Extraction des nombres de Betti avec un modèle géné ratif. in Revue des Nouvelles Technologies de l'Information. vol. E.24, pp. 97-102, Toulouse, France, 29/1/13.
Maillot M, Aupetit M, Govaert G. Extraction des nombres de Betti avec un modèle géné ratif. In Revue des Nouvelles Technologies de l'Information. Vol. E.24. 2013. p. 97-102
Maillot, Maxime ; Aupetit, Michael ; Govaert, Gérard. / Extraction des nombres de Betti avec un modèle géné ratif. Revue des Nouvelles Technologies de l'Information. Vol. E.24 2013. pp. 97-102
@inproceedings{7416e6bdc8964e0c9c030c09a2d982e9,
title = "Extraction des nombres de Betti avec un mod{\`e}le g{\'e}n{\'e} ratif",
abstract = "Exploring multidimensional data is a complex analytic task. We propose a generative model called Generative Simplicial Complex, to extract topological invariants called Betti numbers from the data. The GSC is used to analyze toys data and image data. The GSC appears to be more robust to noise than the Witness Complex, a state of the art geometrical technique to extract Betti numbers of point set data.",
author = "Maxime Maillot and Michael Aupetit and G{\'e}rard Govaert",
year = "2013",
language = "French",
volume = "E.24",
pages = "97--102",
booktitle = "Revue des Nouvelles Technologies de l'Information",

}

TY - GEN

T1 - Extraction des nombres de Betti avec un modèle géné ratif

AU - Maillot, Maxime

AU - Aupetit, Michael

AU - Govaert, Gérard

PY - 2013

Y1 - 2013

N2 - Exploring multidimensional data is a complex analytic task. We propose a generative model called Generative Simplicial Complex, to extract topological invariants called Betti numbers from the data. The GSC is used to analyze toys data and image data. The GSC appears to be more robust to noise than the Witness Complex, a state of the art geometrical technique to extract Betti numbers of point set data.

AB - Exploring multidimensional data is a complex analytic task. We propose a generative model called Generative Simplicial Complex, to extract topological invariants called Betti numbers from the data. The GSC is used to analyze toys data and image data. The GSC appears to be more robust to noise than the Witness Complex, a state of the art geometrical technique to extract Betti numbers of point set data.

UR - http://www.scopus.com/inward/record.url?scp=84877252693&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84877252693&partnerID=8YFLogxK

M3 - Conference contribution

VL - E.24

SP - 97

EP - 102

BT - Revue des Nouvelles Technologies de l'Information

ER -