Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain

Jun Zhu, Xiangao Xia, Jun Wang, Huizheng Che, Hongbin Chen, Jinqiang Zhang, Xiaoguang Xu, Robert C. Levy, Min Oo, Robert Holz, Mohammed Ayoub

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The "MODIS-like" VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the "dark-target" algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440 nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g., surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.

Original languageEnglish
Article number42
JournalRemote Sensing
Volume9
Issue number5
DOIs
Publication statusPublished - 1 May 2017

Fingerprint

optical depth
aerosol
MODIS
albedo
plain
VIIRS
evaluation
scattering
top of atmosphere
surface reflectance
atmospheric correction
spectral reflectance
optical property

Keywords

  • Aerosol models
  • Aerosol optical depth
  • NCP region
  • VIIRS

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Cite this

Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain. / Zhu, Jun; Xia, Xiangao; Wang, Jun; Che, Huizheng; Chen, Hongbin; Zhang, Jinqiang; Xu, Xiaoguang; Levy, Robert C.; Oo, Min; Holz, Robert; Ayoub, Mohammed.

In: Remote Sensing, Vol. 9, No. 5, 42, 01.05.2017.

Research output: Contribution to journalArticle

Zhu, J, Xia, X, Wang, J, Che, H, Chen, H, Zhang, J, Xu, X, Levy, RC, Oo, M, Holz, R & Ayoub, M 2017, 'Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain', Remote Sensing, vol. 9, no. 5, 42. https://doi.org/10.3390/rs9050432
Zhu, Jun ; Xia, Xiangao ; Wang, Jun ; Che, Huizheng ; Chen, Hongbin ; Zhang, Jinqiang ; Xu, Xiaoguang ; Levy, Robert C. ; Oo, Min ; Holz, Robert ; Ayoub, Mohammed. / Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain. In: Remote Sensing. 2017 ; Vol. 9, No. 5.
@article{d21765a9b0f64b3595bb9a4364427e53,
title = "Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain",
abstract = "The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The {"}MODIS-like{"} VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the {"}dark-target{"} algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440 nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g., surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.",
keywords = "Aerosol models, Aerosol optical depth, NCP region, VIIRS",
author = "Jun Zhu and Xiangao Xia and Jun Wang and Huizheng Che and Hongbin Chen and Jinqiang Zhang and Xiaoguang Xu and Levy, {Robert C.} and Min Oo and Robert Holz and Mohammed Ayoub",
year = "2017",
month = "5",
day = "1",
doi = "10.3390/rs9050432",
language = "English",
volume = "9",
journal = "Remote Sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "5",

}

TY - JOUR

T1 - Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain

AU - Zhu, Jun

AU - Xia, Xiangao

AU - Wang, Jun

AU - Che, Huizheng

AU - Chen, Hongbin

AU - Zhang, Jinqiang

AU - Xu, Xiaoguang

AU - Levy, Robert C.

AU - Oo, Min

AU - Holz, Robert

AU - Ayoub, Mohammed

PY - 2017/5/1

Y1 - 2017/5/1

N2 - The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The "MODIS-like" VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the "dark-target" algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440 nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g., surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.

AB - The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on Suomi National Polar-orbiting Partnership (S-NPP) satellite in late 2011. Similar to the Moderate resolution Imaging Spectroradiometer (MODIS), VIIRS observes top-of-atmosphere spectral reflectance and is potentially suitable for retrieval of the aerosol optical depth (AOD). The VIIRS Environmental Data Record data (VIIRS_EDR) is produced operationally by NOAA, and is based on the MODIS atmospheric correction algorithm. The "MODIS-like" VIIRS data (VIIRS_ML) are being produced experimentally at NASA, from a version of the "dark-target" algorithm that is applied to MODIS. In this study, the AOD and aerosol model types from these two VIIRS retrieval algorithms over the North China Plain (NCP) are evaluated using the ground-based CE318 Sunphotometer (CE318) measurements during 2 May 2012-31 March 2014 at three sites. These sites represent three different surface types: urban (Beijing), suburban (XiangHe) and rural (Xinglong). Firstly, we evaluate the retrieved spectral AOD. For the three sites, VIIRS_EDR AOD at 550 nm shows a positive mean bias (MB) of 0.04-0.06 and the correlation of 0.83-0.86, with the largest MB (0.10-0.15) observed in Beijing. In contrast, VIIRS_ML AOD at 550 nm has overall higher positive MB of 0.13-0.14 and a higher correlation (0.93-0.94) with CE318 AOD. Secondly, we evaluate the aerosol model types assumed by each algorithm, as well as the aerosol optical properties used in the AOD retrievals. The aerosol model used in VIIRS_EDR algorithm shows that dust and clean urban models were the dominant model types during the evaluation period. The overall accuracy rate of the aerosol model used in VIIRS_ML over NCP three sites (0.48) is higher than that of VIIRS_EDR (0.27). The differences in Single Scattering Albedo (SSA) at 670 nm between VIIRS_ML and CE318 are mostly less than 0.015, but high seasonal differences are found especially over the Xinglong site. The values of SSA from VIIRS_EDR are higher than that observed by CE318 over all sites and all assumed aerosol modes, with a positive bias of 0.02-0.04 for fine mode, 0.06-0.12 for coarse mode and 0.03-0.05 for bi-mode at 440 nm. The overestimation of SSA but positive AOD MB of VIIRS_EDR indicate that other factors (e.g., surface reflectance characterization or cloud contamination) are important sources of error in the VIIRS_EDR algorithm, and their effects on aerosol retrievals may override the effects from non-ideality in these aerosol models.

KW - Aerosol models

KW - Aerosol optical depth

KW - NCP region

KW - VIIRS

UR - http://www.scopus.com/inward/record.url?scp=85019959940&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019959940&partnerID=8YFLogxK

U2 - 10.3390/rs9050432

DO - 10.3390/rs9050432

M3 - Article

AN - SCOPUS:85019959940

VL - 9

JO - Remote Sensing

JF - Remote Sensing

SN - 2072-4292

IS - 5

M1 - 42

ER -