Diagnostic de fonctionnement de capteurs d'un réseau de surveillance de la qualité de l'air par analyse en composantes principales

Translated title of the contribution: Diagnosis of the functioning of sensors of an air quality surveillance system by analysis of the main components

Mohamed-Faouzi Harkat, Gilles Mourot, José Ragot

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

In this paper a sensor fault detection and isolation procedure based on principal component analysis is proposed to monitor an air quality monitoring network. The PCA model of the network is optimal with respect to a reconstruction error criterion. The sensor fault detection is carried out in various residual subspaces using a new detection index. The reconstruction approach allows, on one hand, by combining it with the detection index, to isolate the faulty sensors and, on the other hand, to estimate the fault amplitudes. Diagnosis, principal component analysis, sensor failure detection and isolation, reconstruction approach, air quality monitoring network.

Original languageFrench
Pages (from-to)417-436
Number of pages20
JournalJournal Europeen des Systemes Automatises
Volume39
Issue number4
DOIs
Publication statusPublished - 1 Dec 2005
Externally publishedYes

Fingerprint

Air quality
Sensors
Fault detection
Principal component analysis
Monitoring

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Science Applications
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Cite this

Diagnostic de fonctionnement de capteurs d'un réseau de surveillance de la qualité de l'air par analyse en composantes principales. / Harkat, Mohamed-Faouzi; Mourot, Gilles; Ragot, José.

In: Journal Europeen des Systemes Automatises, Vol. 39, No. 4, 01.12.2005, p. 417-436.

Research output: Contribution to journalArticle

@article{3d6d2d04c8764b879ba9abbe510d8437,
title = "Diagnostic de fonctionnement de capteurs d'un r{\'e}seau de surveillance de la qualit{\'e} de l'air par analyse en composantes principales",
abstract = "In this paper a sensor fault detection and isolation procedure based on principal component analysis is proposed to monitor an air quality monitoring network. The PCA model of the network is optimal with respect to a reconstruction error criterion. The sensor fault detection is carried out in various residual subspaces using a new detection index. The reconstruction approach allows, on one hand, by combining it with the detection index, to isolate the faulty sensors and, on the other hand, to estimate the fault amplitudes. Diagnosis, principal component analysis, sensor failure detection and isolation, reconstruction approach, air quality monitoring network.",
author = "Mohamed-Faouzi Harkat and Gilles Mourot and Jos{\'e} Ragot",
year = "2005",
month = "12",
day = "1",
doi = "10.3166/jesa.39.417-436",
language = "French",
volume = "39",
pages = "417--436",
journal = "Journal Europeen des Systemes Automatises",
issn = "1269-6935",
publisher = "Lavoisier",
number = "4",

}

TY - JOUR

T1 - Diagnostic de fonctionnement de capteurs d'un réseau de surveillance de la qualité de l'air par analyse en composantes principales

AU - Harkat, Mohamed-Faouzi

AU - Mourot, Gilles

AU - Ragot, José

PY - 2005/12/1

Y1 - 2005/12/1

N2 - In this paper a sensor fault detection and isolation procedure based on principal component analysis is proposed to monitor an air quality monitoring network. The PCA model of the network is optimal with respect to a reconstruction error criterion. The sensor fault detection is carried out in various residual subspaces using a new detection index. The reconstruction approach allows, on one hand, by combining it with the detection index, to isolate the faulty sensors and, on the other hand, to estimate the fault amplitudes. Diagnosis, principal component analysis, sensor failure detection and isolation, reconstruction approach, air quality monitoring network.

AB - In this paper a sensor fault detection and isolation procedure based on principal component analysis is proposed to monitor an air quality monitoring network. The PCA model of the network is optimal with respect to a reconstruction error criterion. The sensor fault detection is carried out in various residual subspaces using a new detection index. The reconstruction approach allows, on one hand, by combining it with the detection index, to isolate the faulty sensors and, on the other hand, to estimate the fault amplitudes. Diagnosis, principal component analysis, sensor failure detection and isolation, reconstruction approach, air quality monitoring network.

UR - http://www.scopus.com/inward/record.url?scp=33645866474&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645866474&partnerID=8YFLogxK

U2 - 10.3166/jesa.39.417-436

DO - 10.3166/jesa.39.417-436

M3 - Article

VL - 39

SP - 417

EP - 436

JO - Journal Europeen des Systemes Automatises

JF - Journal Europeen des Systemes Automatises

SN - 1269-6935

IS - 4

ER -