Detection and identification of hydrophilic selenium compounds in selenium-rich yeast by size exclusion-microbore normal-phase HPLC with the on-line ICP-MS and electrospray Q-TOF-MS detection

Johann Far, Hugues Preud'homme, Ryszard Lobinski

Research output: Contribution to journalArticle

50 Citations (Scopus)


Normal-phase HPLC and hydrophilic interaction HPLC (HILIC) were investigated for the separation of selenometabolites in a water extract of Se-rich yeast prior to their detection by ICP-MS and identification by electrospray MS/MS. The targeted fraction was a low-abundant fraction co-eluting with salt and sulfur analogues in size-exclusion chromatography which has so far been inaccessible to Se speciation studies. The optimization of the separation conditions resulted in the highest separation efficiency when HILIC was used and elution was carried out isocratically with a low concentration ammonium acetate buffer (1 mM ammonium acetate/10 mM acetic acid) in 80% acetonitrile. Out of 15 peaks observed with the Se-specific ICP-MS detection 12 was identified by electrospray Q-TOF MS/MS (2,3-dihydroxypropionyl (DHP)-Se-methylselenocysteine [M+H]+: 272, Se-methyl-γ-glutamyl-selenocysteinylglycine dioxide [M+H]+: 402, γ-glutamyl-Se-methylselenocysteine [M+H]+: 313; isomers of γ-glutamylselenocystathionine [M+H]+: 400; Se-methyl-selenoglutathione [M+H]+: 370, isomers of N-acetylselenocystathionine [M+H]+: 313, 2,3-DHP-selenohomolanthionine [M+H]+: 373, isomers of 2,3-DHP-selenocystathionine [M+H]+: 359, 2,3-DHP-selenolanthionine [M+H]+: 345 and selenohomolanthionine [M+H]+: 285).

Original languageEnglish
Pages (from-to)175-190
Number of pages16
JournalAnalytica Chimica Acta
Issue number2
Publication statusPublished - 11 Jan 2010



  • ICP-MS
  • Normal phase
  • Selenium enriched yeast metabolome

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy

Cite this