Creep behavior of glass/ceramic sealant and its effect on long-term performance of solid oxide fuel cells

Wenning N. Liu, Xin Sun, Brian Koeppel, Elizabeth Stephens, Mohammad A. Khaleel

Research output: Contribution to journalArticle

9 Citations (Scopus)


The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass-ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multiphysics simulation of SOFCs. The effect of creep of glass-ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite-element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

Original languageEnglish
Pages (from-to)49-59
Number of pages11
JournalInternational Journal of Applied Ceramic Technology
Issue number1
Publication statusPublished - 1 Jan 2011


ASJC Scopus subject areas

  • Ceramics and Composites
  • Condensed Matter Physics
  • Marketing
  • Materials Chemistry

Cite this