Constrained shortest path computation

Manolis Terrovitis, Spiridon Bakiras, Dimitris Papadias, Kyriakos Mouratidis

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

This paper proposes and solves α-autonomy and κ-stops shortest path problems in large spatial databases. Given a source s and a destination d, an α-autonomy query retrieves a sequence of data points connecting s and d, such that the distance between any two consecutive points in the path is not greater than α. A κ-stops query retrieves a sequence that contains exactly κ intermediate data points. In both cases our aim is to compute the shortest path subject to these constraints. Assuming that the dataset is indexed by a data-partitioning method, the proposed techniques initially compute a sub-optimal path by utilizing the Euclidean distance information provided by the index. The length of the retrieved path is used to prune the search space, filtering out large parts of the input dataset. In a final step, the optimal (α-autonomy or κ-stops) path is computed (using only the non-eliminated data points) by an exact algorithm. We discuss several processing methods for both problems, and evaluate their efficiency through extensive experiments.

Original languageEnglish
Pages (from-to)181-199
Number of pages19
JournalLecture Notes in Computer Science
Volume3633
Publication statusPublished - 2005
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Terrovitis, M., Bakiras, S., Papadias, D., & Mouratidis, K. (2005). Constrained shortest path computation. Lecture Notes in Computer Science, 3633, 181-199.