Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion

Tariq Ahmed, Ann Van der Jeugd, David Blum, Marie Christine Galas, Rudi D'Hooge, Luc Buee, Detlef Balschun

Research output: Contribution to journalArticle

46 Citations (Scopus)


Tau has been implicated in the organization, stabilization, and dynamics of microtubules. In Alzheimer's disease and more than 20 neurologic disorders tau missorting, hyperphosphorylation, and aggregation is a hallmark. They are collectively referred to as tauopathies. Although the impact of human tauopathies on cognitive processes has been explored in transgenic mouse models, the functional consequences of tau deletion on cognition are far less investigated. Here, we subjected tau knock-out (KO) mice to a battery of neurocognitive, behavioral, and electrophysiological tests. Although KO and wild-type mice were indistinguishable in motor abilities, exploratory and anxiety behavior, KO mice showed impaired contextual and cued fear conditioning. In contrast, extensive spatial learning in the water maze resulted in better performance of KO mice during acquisition. In electrophysiological experiments, basal synaptic transmission and paired-pulse facilitation in the hippocampal CA1-region were unchanged. Interestingly, deletion of tau resulted in severe deficits in long-term potentiation but not long-term depression. Our results suggest a role of tau in certain cognitive functions and implicate long-term potentiation as the relevant physiological substrate.

Original languageEnglish
Pages (from-to)2474-2478
Number of pages5
JournalNeurobiology of Aging
Issue number11
Publication statusPublished - 1 Nov 2014
Externally publishedYes



  • Alzheimer's disease
  • Cognition
  • Hippocampus
  • Long-term depression
  • Morris water maze
  • Synaptic plasticity
  • Tau knock-out mice

ASJC Scopus subject areas

  • Neuroscience(all)
  • Ageing
  • Developmental Biology
  • Geriatrics and Gerontology
  • Clinical Neurology

Cite this

Ahmed, T., Van der Jeugd, A., Blum, D., Galas, M. C., D'Hooge, R., Buee, L., & Balschun, D. (2014). Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiology of Aging, 35(11), 2474-2478.