Chemical bath process for highly efficient Cd-free chalcopyrite thin-film-based solar cells

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

The highest efficiency for Cu(Ga,In)Se2 (CIGS) thin-film-based solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as the chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, we describe the basic concepts involved in the CBD technique. The recipes developed in our laboratory for the heterogeneous deposition of good-quality thin films of ZnO, ZnSe, and MnS are presented. In view of device optimization, the initial formation of chemical-bath-deposited ZnSe thin films on Cu(Ga,In)(S,Se)2 (CIGSS) and the subsequent development of the ZnSe/CIGSS heterojunctions were investigated by X-ray photoelectron spectroscopy (XPS). The good surface coverage was controlled by measuring changes in the valence-band electronic structure as well as changes in the In4d, Zn3d core lines. From these measurements, the growth rate was found to be around 3.6 nm/min. The valence band and the conduction band-offsets ΔEV and ΔEC between the layers were determined to be 0.60 and 1.27 eV, respectively for the CIGSS/ZnSe interface. The energy-band diagram is discussed in connection with the band-offsets detemined from XPS data. A ZnSe thickness below 10 nm has been found to be optimum for achieving a homogeneous and compact buffer layer on CIGSS with a total area efficiency of 13.7%.

Original languageEnglish
Pages (from-to)723-729
Number of pages7
JournalCanadian Journal of Physics
Volume77
Issue number9
Publication statusPublished - Sep 1999
Externally publishedYes

Fingerprint

baths
solar cells
thin films
buffers
photoelectron spectroscopy
valence
energy bands
heterojunctions
conduction bands
x rays
diagrams
electronic structure
optimization

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Chemical bath process for highly efficient Cd-free chalcopyrite thin-film-based solar cells. / Ennaoui, Ahmed.

In: Canadian Journal of Physics, Vol. 77, No. 9, 09.1999, p. 723-729.

Research output: Contribution to journalArticle

@article{56f29c261c644dbe8654fd9cba11ca9b,
title = "Chemical bath process for highly efficient Cd-free chalcopyrite thin-film-based solar cells",
abstract = "The highest efficiency for Cu(Ga,In)Se2 (CIGS) thin-film-based solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as the chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, we describe the basic concepts involved in the CBD technique. The recipes developed in our laboratory for the heterogeneous deposition of good-quality thin films of ZnO, ZnSe, and MnS are presented. In view of device optimization, the initial formation of chemical-bath-deposited ZnSe thin films on Cu(Ga,In)(S,Se)2 (CIGSS) and the subsequent development of the ZnSe/CIGSS heterojunctions were investigated by X-ray photoelectron spectroscopy (XPS). The good surface coverage was controlled by measuring changes in the valence-band electronic structure as well as changes in the In4d, Zn3d core lines. From these measurements, the growth rate was found to be around 3.6 nm/min. The valence band and the conduction band-offsets ΔEV and ΔEC between the layers were determined to be 0.60 and 1.27 eV, respectively for the CIGSS/ZnSe interface. The energy-band diagram is discussed in connection with the band-offsets detemined from XPS data. A ZnSe thickness below 10 nm has been found to be optimum for achieving a homogeneous and compact buffer layer on CIGSS with a total area efficiency of 13.7{\%}.",
author = "Ahmed Ennaoui",
year = "1999",
month = "9",
language = "English",
volume = "77",
pages = "723--729",
journal = "Canadian Journal of Physics",
issn = "0008-4204",
publisher = "National Research Council of Canada",
number = "9",

}

TY - JOUR

T1 - Chemical bath process for highly efficient Cd-free chalcopyrite thin-film-based solar cells

AU - Ennaoui, Ahmed

PY - 1999/9

Y1 - 1999/9

N2 - The highest efficiency for Cu(Ga,In)Se2 (CIGS) thin-film-based solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as the chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, we describe the basic concepts involved in the CBD technique. The recipes developed in our laboratory for the heterogeneous deposition of good-quality thin films of ZnO, ZnSe, and MnS are presented. In view of device optimization, the initial formation of chemical-bath-deposited ZnSe thin films on Cu(Ga,In)(S,Se)2 (CIGSS) and the subsequent development of the ZnSe/CIGSS heterojunctions were investigated by X-ray photoelectron spectroscopy (XPS). The good surface coverage was controlled by measuring changes in the valence-band electronic structure as well as changes in the In4d, Zn3d core lines. From these measurements, the growth rate was found to be around 3.6 nm/min. The valence band and the conduction band-offsets ΔEV and ΔEC between the layers were determined to be 0.60 and 1.27 eV, respectively for the CIGSS/ZnSe interface. The energy-band diagram is discussed in connection with the band-offsets detemined from XPS data. A ZnSe thickness below 10 nm has been found to be optimum for achieving a homogeneous and compact buffer layer on CIGSS with a total area efficiency of 13.7%.

AB - The highest efficiency for Cu(Ga,In)Se2 (CIGS) thin-film-based solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as the chemical bath deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, we describe the basic concepts involved in the CBD technique. The recipes developed in our laboratory for the heterogeneous deposition of good-quality thin films of ZnO, ZnSe, and MnS are presented. In view of device optimization, the initial formation of chemical-bath-deposited ZnSe thin films on Cu(Ga,In)(S,Se)2 (CIGSS) and the subsequent development of the ZnSe/CIGSS heterojunctions were investigated by X-ray photoelectron spectroscopy (XPS). The good surface coverage was controlled by measuring changes in the valence-band electronic structure as well as changes in the In4d, Zn3d core lines. From these measurements, the growth rate was found to be around 3.6 nm/min. The valence band and the conduction band-offsets ΔEV and ΔEC between the layers were determined to be 0.60 and 1.27 eV, respectively for the CIGSS/ZnSe interface. The energy-band diagram is discussed in connection with the band-offsets detemined from XPS data. A ZnSe thickness below 10 nm has been found to be optimum for achieving a homogeneous and compact buffer layer on CIGSS with a total area efficiency of 13.7%.

UR - http://www.scopus.com/inward/record.url?scp=0004371180&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0004371180&partnerID=8YFLogxK

M3 - Article

VL - 77

SP - 723

EP - 729

JO - Canadian Journal of Physics

JF - Canadian Journal of Physics

SN - 0008-4204

IS - 9

ER -