Charge separation and recombination in radial ZnO/ In2S 3 /CuSCN heterojunction structures

Julian Tornow, Klaus Schwarzburg, Abdelhak Belaidi, Thomas Dittrich, Marinus Kunst, Thomas Hannappel

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

A ZnO-nanorod/ In2S3 /CuSCN radial heterostructure has recently shown promising photovoltaic conversion efficiencies. In this work, the charge separation and recombination in single ZnO/ In2S 3 and In2S3 /CuSCN interfaces as well as the complete ZnO/ In2S3 /CuSCN structure were studied by time resolved microwave photoconductivity. Photoconductivity transients were measured for different thicknesses of the In2S3 light absorbing layer, under variation in the exciting light flux and before and after annealing of the ZnO nanorods at 450 °C. Upon excitation with 532 nm light, a long lived (millisecond) charge separation at the In2S3 /ZnO interface was found, whereas no charge separation was present at the In 2S3 /CuSCN interface. The presence of the CuSCN hole conductor increased the initial amplitude of the time resolved microwave conductivity signal of the In2S3 /ZnO interface by a factor of 8 for a 6 nm thick In2S3 layer, but the enhancement in amplitude dropped strongly for thicker films. The measurements show that the primary charge separation is located at the In2S 3 /ZnO interface but the charge injection yield into ZnO depends critically on the presence of CuSCN.

Original languageEnglish
Article number044915
JournalJournal of Applied Physics
Volume108
Issue number4
DOIs
Publication statusPublished - 15 Aug 2010
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this