### Abstract

The charge renormalization procedure for the calculation of the correlation energy of atoms utilizing the analytically known large-D limit solutions for the exact and Hartree-Fock equations is extended to diatomic molecules. This procedure is based on the variation of the nuclear charge, Z, and internuclear distance, R, of the Hartree-Fock Hamiltonian such that the Hartree-Fock energy will be significantly closer to the exact energy. We calculate to first order in δZ the leading contribution to the correlation energy by changing the nuclear charge to some renormalized nuclear charge, Z_{i}
^{R} → Z_{i} + δZ_{i}. To first order in δZ, this leads to an approximate expression, E^{corr}(Z_{a},Z _{b},R) = (∂E^{HF}/∂Z_{a}) δZ _{a} + (∂E^{HF}/∂Z_{b}) δZ_{b}, for the correlation energy based on the charge renormalization parameter δZ, which is fixed systematically from the large-D limit. The theory is applied to diatomic molecules. Near the equilibrium, we are predicting the correlation energy typically with 80% or greater accuracy in a completely self-consistent and systematic way with no additional cost to the Hartree-Fock calculation. An improved approach to estimating the correlation energy for all R is outlined.

Original language | English |
---|---|

Pages (from-to) | 6529-6535 |

Number of pages | 7 |

Journal | The Journal of Chemical Physics |

Volume | 103 |

Issue number | 15 |

Publication status | Published - 1 Dec 1995 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Atomic and Molecular Physics, and Optics

### Cite this

*The Journal of Chemical Physics*,

*103*(15), 6529-6535.

**Charge renormalization at the large-D limit for diatomic molecules.** / Bleil, R.; Faliks, A.; Miletic, M.; Kais, S.

Research output: Contribution to journal › Article

*The Journal of Chemical Physics*, vol. 103, no. 15, pp. 6529-6535.

}

TY - JOUR

T1 - Charge renormalization at the large-D limit for diatomic molecules

AU - Bleil, R.

AU - Faliks, A.

AU - Miletic, M.

AU - Kais, S.

PY - 1995/12/1

Y1 - 1995/12/1

N2 - The charge renormalization procedure for the calculation of the correlation energy of atoms utilizing the analytically known large-D limit solutions for the exact and Hartree-Fock equations is extended to diatomic molecules. This procedure is based on the variation of the nuclear charge, Z, and internuclear distance, R, of the Hartree-Fock Hamiltonian such that the Hartree-Fock energy will be significantly closer to the exact energy. We calculate to first order in δZ the leading contribution to the correlation energy by changing the nuclear charge to some renormalized nuclear charge, Zi R → Zi + δZi. To first order in δZ, this leads to an approximate expression, Ecorr(Za,Z b,R) = (∂EHF/∂Za) δZ a + (∂EHF/∂Zb) δZb, for the correlation energy based on the charge renormalization parameter δZ, which is fixed systematically from the large-D limit. The theory is applied to diatomic molecules. Near the equilibrium, we are predicting the correlation energy typically with 80% or greater accuracy in a completely self-consistent and systematic way with no additional cost to the Hartree-Fock calculation. An improved approach to estimating the correlation energy for all R is outlined.

AB - The charge renormalization procedure for the calculation of the correlation energy of atoms utilizing the analytically known large-D limit solutions for the exact and Hartree-Fock equations is extended to diatomic molecules. This procedure is based on the variation of the nuclear charge, Z, and internuclear distance, R, of the Hartree-Fock Hamiltonian such that the Hartree-Fock energy will be significantly closer to the exact energy. We calculate to first order in δZ the leading contribution to the correlation energy by changing the nuclear charge to some renormalized nuclear charge, Zi R → Zi + δZi. To first order in δZ, this leads to an approximate expression, Ecorr(Za,Z b,R) = (∂EHF/∂Za) δZ a + (∂EHF/∂Zb) δZb, for the correlation energy based on the charge renormalization parameter δZ, which is fixed systematically from the large-D limit. The theory is applied to diatomic molecules. Near the equilibrium, we are predicting the correlation energy typically with 80% or greater accuracy in a completely self-consistent and systematic way with no additional cost to the Hartree-Fock calculation. An improved approach to estimating the correlation energy for all R is outlined.

UR - http://www.scopus.com/inward/record.url?scp=0345999500&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0345999500&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0345999500

VL - 103

SP - 6529

EP - 6535

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 15

ER -